#include<bits/stdc++.h>
using namespace std;
#define N 35
#define INF 1e9
int dis[N][N],n,len,ans;
int main(){
while(scanf("%d",&n)){
if(!n) break;
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
scanf("%d",&dis[i][j]),dis[j][i]=dis[i][j];
ans=dis[][];
for(int i=;i<=n;i++){
len=INF;
for(int j=;j<=n;j++)
for(int k=j+;k<=n;k++)
if(j!=i && k!=i)
len=min(len,(dis[i][j]+dis[i][k]-dis[j][k])/);
ans+=len;
}
printf("%d\n",ans);
}
return ;
}

一道构造题。666

锻炼思维的好题,需要运用一些树的性质。以下用g(i,j)表示点i与点j之间的距离。

首先,我们考虑n=2时的情况,很显然答案就是g(1,2)。

接下来考虑n=3时的情况。由于所有点均为叶子节点,很显然点3是从点1到点2的路径上分叉出来的,就像下图。

设蓝色部分长度为len,那么答案就是g(1,2)+len。len怎么求呢?显然,len = (g(1,3)+g(2,3)-g(1,2))/2。

n>3的情况也同理。枚举i,看看点n是不是从点1~i的路径上分叉出来的,求出的最小len就是要加到答案里面去的。如下图。

如果认为点4是从1~2的路径上分叉出来的,答案就会加上红色部分的长度。但是红色部分长度显然有一部分是多余的。只有认为点4是从1~3的路径上分叉出来的,才能加上正确答案(也就是蓝色部分)。

LG1268树的重量的更多相关文章

  1. 洛谷P1268 树的重量

    P1268 树的重量 85通过 141提交 题目提供者该用户不存在 标签树形结构 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 有这种情况吗!!!! 题意似乎有问题 题目描述 树可以用来表 ...

  2. 洛谷P1268 树的重量 【构造 + 枚举】

    题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离 ...

  3. P1268 树的重量

    题目描述 树可以用来表示物种之间的进化关系.一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树 ...

  4. 洛谷 P1268 树的重量 解题报告

    P1268 树的重量 题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题 ...

  5. LuoguP1268树的重量【构造/思维】By cellur925

    题目传送门 Description 给你一个矩阵$M$,$M(i,j)$表示$i$到$j$的最短距离.定义树的重量为树上各边权之和,对于任意给出的合法矩阵$M$,已知它所能表示树的重量是唯一确定的.给 ...

  6. 洛谷—— P1268 树的重量

    P1268 树的重量 构造类题目,看不出个所以然来... emmm,只好看题解: 只有两个点,那一条路径就是$ans$ 考虑三个点,那么$3$这个点相对于树上的路径(已经加入树上的边的距离) 为:$( ...

  7. P1268 树的重量【构造】

    题目描述 树可以用来表示物种之间的进化关系.一棵“进化树”是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之间的距离,重构相应的“进化树 ...

  8. [Luogu P1268] 树的重量 (巧妙的构造题)

    题面 传送门:https://www.luogu.org/problemnew/show/P1268 Solution 这是一道极其巧妙的构造题 先做一个约定[i,j]表示从i到j的距离 我们可以先从 ...

  9. P1268 树的重量(板子)

    题目: 题目描述 树可以用来表示物种之间的进化关系.一棵"进化树"是一个带边权的树,其叶节点表示一个物种,两个叶节点之间的距离表示两个物种的差异.现在,一个重要的问题是,根据物种之 ...

随机推荐

  1. UITableView中Cell和section的插入与删除

    插入段: - (void)insertSections:(NSIndexSet *)sections withRowAnimation:(UITableViewRowAnimation)animati ...

  2. (顺序表的应用5.4.3)POJ 1012(约瑟夫环问题——保证前k个出队元素为后k个元素)

    /* * POJ-1012.cpp * * Created on: 2013年10月31日 * Author: Administrator */ #include <iostream> # ...

  3. xcode编译错误

    1.xcode无效文件的编译错误. 问题: clang: error: no such file or directory: '/Users/admin/client/trunk/sengoku_sc ...

  4. Unix/Linux编程实践教程(三:代码、测试)

    测试logfilec.c的时候,有个sendto(sock,msg,strlen(msg),0,&addr,addrlen),编译时提示: logfilec.c:30: warning: pa ...

  5. mysql数据库的一些用法

    mysql数据库语句 1.replace into      REPLACE INTO  (列名1,列名2,列名3) VALUES ('值1','值2','值3');      # 如果数据库中不存在 ...

  6. laravel框架总结(四) -- 服务容器

    1.依赖 我们定义两个类:class Supperman 和 class Power,现在我们要使用Supperman ,而Supperman 依赖了Power class Supperman { p ...

  7. 理解GRUB2工作原理及配置选项与方法

    GRUB2是借鉴GRUB改写到更加安全强大到多系统引导程序,现在大部分较新的Linux发行版都是使用GRUB2作为引导程序的.GRUB2采用了模块化设计,使得GRUB2核心更加精炼,使用更加灵活,同时 ...

  8. crontab 的使用

    1. 创建一个文件  mycrontab 2. 将此文件运用到系统的定时器中     crontab  mycrontab 3. crontab -e     (或直接编辑  mycrontab, 但 ...

  9. [问题2015S12] 复旦高等代数 II(14级)每周一题(第十三教学周)

    [问题2015S12]  设 \(A\) 为 \(n\) 阶实矩阵, 若对任意的非零 \(n\) 维实列向量 \(\alpha\), 总有 \(\alpha'A\alpha>0\), 则称 \( ...

  10. 参考:(Java Selenium)Element is not visible to clcik

    1.The element is not visible to click. Use Actions or JavascriptExecutor for making it to click. By ...