POJ 3694 tarjan 桥+lca
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 7298 | Accepted: 2651 |
Description
A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.
You are to help the administrator by reporting the number of bridges in the network after each new link is added.
Input
The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.
The last test case is followed by a line containing two zeros.
Output
For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.
Sample Input
3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0
Sample Output
Case 1:
1
0 Case 2:
2
0
Source
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <queue>
#include <cmath>
#include <set>
#include <map>
#include <stack>
using namespace std; #define N 100005 int n, m;
int dfn[N], low[N], Time;
int dep[N];
bool brg[N];
int father[N];
int brg_num; struct Edge{
int u, v, next;
}e[]; int cnt;
int head[N]; void setEdge(int u,int v){
e[cnt].u=u;e[cnt].v=v;
e[cnt].next=head[u];head[u]=cnt++;
} void tarjan(int u,int fa){
int i, v;
dfn[u]=low[u]=Time++;
for(i=head[u];i!=-;i=e[i].next){
v=e[i].v;
if(v==fa) continue;
if(!dfn[v]){
dep[v]=dep[u]+;
father[v]=u;
tarjan(v,u);
if(low[v]>dfn[u]){
brg_num++;
brg[v]=true;
}
low[u]=min(low[u],low[v]);
}
else low[u]=min(dfn[v],low[u]);
}
} void lca(int u,int v){
while(dep[u]>dep[v]){
if(brg[u]) {
brg[u]=false,brg_num--;
}
u=father[u];
}
while(dep[v]>dep[u]){
if(brg[v]) {
brg[v]=false,brg_num--;
}
v=father[v];
}
while(u!=v){
if(brg[u]) {
brg[u]=false,brg_num--;
}
u=father[u];
if(brg[v]) {
brg[v]=false,brg_num--;
}
v=father[v];
}
} main()
{
int i, j, k;
int u, v;
int kase=;
while(scanf("%d %d",&n,&m)==){
if(!n&&!m) break;
memset(head,-,sizeof(head));
cnt=;
for(i=;i<m;i++){
scanf("%d %d",&u,&v);
setEdge(u,v);
setEdge(v,u);
}
Time=;
memset(dfn,,sizeof(dfn));
memset(brg,false,sizeof(brg));
brg_num=;
for(i=;i<=n;i++){
if(!dfn[i]){
dep[i]=;
tarjan(i,i);
}
}
printf("Case %d:\n",kase++);
int q;
scanf("%d",&q);
for(i=;i<q;i++){
scanf("%d %d",&u,&v);
lca(u,v);
printf("%d\n",brg_num);
}
cout<<endl;
}
}
POJ 3694 tarjan 桥+lca的更多相关文章
- POJ 3694 (tarjan缩点+LCA+并查集)
好久没写过这么长的代码了,题解东哥讲了那么多,并查集优化还是很厉害的,赶快做做前几天碰到的相似的题. #include <iostream> #include <algorithm& ...
- poj 3694 Network(割边+lca)
题目链接:http://poj.org/problem?id=3694 题意:一个无向图中本来有若干条桥,有Q个操作,每次加一条边(u,v),每次操作后输出桥的数目. 分析:通常的做法是:先求出该无向 ...
- hdu 2460 poj 3694 (双联通+LCA)
在给出的两个点上加一条边,求剩下桥的数量,,不会LCA在线,就用了最普通的,先Tarjan双联通缩点,然后将缩完的图建成一棵树,树的所有边就是桥了,如果在任意两点间加一条边的话,那么从两点到最近公共祖 ...
- poj 3694(割边+lca)
题意:给你一个无向图,可能有重边,有q次询问,问你每次我添加一条边,添加后这个图还有多少个桥 解题思路:首先先把所有没有割边的点对缩成一个联通块,无向图一般并查集判环,然后就得到一个割边树,给你一条新 ...
- 【POJ 3694】 Network(割边<桥>+LCA)
[POJ 3694] Network(割边+LCA) Network Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7971 ...
- POJ 3694——Network——————【连通图,LCA求桥】
Network Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Stat ...
- Poj 3694 Network (连通图缩点+LCA+并查集)
题目链接: Poj 3694 Network 题目描述: 给出一个无向连通图,加入一系列边指定的后,问还剩下多少个桥? 解题思路: 先求出图的双连通分支,然后缩点重新建图,加入一个指定的边后,求出这条 ...
- Tarjan算法各种&RMQ& POJ 3694
关于tarjan 的思想可以在网上搜到,具体我也不太清楚,应该说自己理解也不深,下面是做题经验得到的一些模板. 其中有很多转载,包括BYVoid等,感谢让我转...望各路大神愿谅 有向图求连通分量的一 ...
- 【Tarjan】洛谷P3379 Tarjan求LCA
题目描述 如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 输入输出格式 输入格式: 第一行包含三个正整数N.M.S,分别表示树的结点个数.询问的个数和树根结点的序号. 接下来N-1行每 ...
随机推荐
- OAuth2.0概述
OAuth2.0较1.0相比,整个授权验证流程更简单更安全,也是未来最主要的用户身份验证和授权方式. 关于OAuth2.0协议的授权流程可以参考下面的流程图,其中Client指第三方应用,Resour ...
- Objective-C语言Foundation框架
Mac OS X开发会使用Cocoa框架,它是一种支持应用程序提供丰富用户体验的框架,它实际上由:Foundation和Application Kit(AppKit)框架组成.iOS开发,会使用Coc ...
- jenkins+gerrit
Verified 功能 http://www.cnblogs.com/zhanchenjin/p/5032218.html
- Dynamics AX 2012 R2 创建一个带有负载均衡的服务器集群
安装额外AOS的主要目的,是将它添加到集群,或用于创建批处理服务器. 1.创建集群服务器 这里,Reinhard使用上节Install An Additional AOS 中创建的AOS,来创建集群. ...
- ionic 总结
希望大家都能有了好东西分享出来,单单就ionic来说,我是刚接触,现在用的人不是很多. 我认为如果大家能 有了好的东西或者好的方案 不藏着掖着,分享出来,那么我们的社区会更加活跃,用的人会越来越多,解 ...
- JAVA线程同步辅助类CyclicBarrier循环屏障
CyclicBarrier是一个同步辅助类,主要作用是让一组线程互相等待,知道都到达一个公共障点,在一起走.在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrie ...
- Jeff Dean
"--出自"关于 Jeff Dean 的事实" 其实,"关于 Jeff Dean 的事实"这个G+ 帖中描述的并非是真实的.不过有人大费周折为他建立了 ...
- python 字符串 转 dict
比直接eval更好的方法>>>import ast >>>ast.literal_eval("{'muffin' : 'lolz', 'foo' : 'k ...
- 无法嵌入互操作类型“ESRI.ArcGIS.Carto.RectangleElementClass”。请改用适用的接口。
右键点击应用的程序集 ESRI.ArcGIS.Controls,修改"嵌入互操作类型"的值即可
- 物联网安全拔“牙”实战——低功耗蓝牙(BLE)初探
物联网安全拔“牙”实战——低功耗蓝牙(BLE)初探 唐朝实验室 · 2015/10/30 10:22 Author: FengGou 0x00 目录 0x00 目录 0x01 前言 0x02 BLE概 ...