虽然golang是用C实现的,并且被称为下一代的C语言,但是golang跟C的差别还是很大的。它定义了一套很丰富的数据类型及数据结构,这些类型和结构或者是直接映射为C的数据类型,或者是用C struct来实现。了解golang的数据类型和数据结构的底层实现,将有助于我们更好的理解golang并写出质量更好的代码。

基础类型

源码在:$GOROOT/src/pkg/runtime/runtime.h 。我们先来看下基础类型:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

/*

* basic types

*/

typedef signed char             int8;

typedef unsigned char           uint8;

typedef signed short            int16;

typedef unsigned short          uint16;

typedef signed int              int32;

typedef unsigned int            uint32;

typedef signed long long int    int64;

typedef unsigned long long int  uint64;

typedef float                   float32;

typedef double                  float64;

#ifdef _64BIT

typedef uint64          uintptr;

typedef int64           intptr;

typedef int64           intgo; // Go's int

typedef uint64          uintgo; // Go's uint

#else

typedef uint32          uintptr;

typedef int32           intptr;

typedef int32           intgo; // Go's int

typedef uint32          uintgo; // Go's uint

#endif

/*

* defined types

*/

typedef uint8           bool;

typedef uint8           byte;

int8、uint8、int16、uint16、int32、uint32、int64、uint64、float32、float64分别对应于C的类型,这个只要有C基础就很容易看得出来。uintptr和intptr是无符号和有符号的指针类型,并且确保在64位平台上是8个字节,在32位平台上是4个字节,uintptr主要用于golang中的指针运算。而intgo和uintgo之所以不命名为int和uint,是因为int在C中是类型名,想必uintgo是为了跟intgo的命名对应吧。intgo和uintgo对应golang中的int和uint。从定义可以看出int和uint是可变大小类型的,在64位平台上占8个字节,在32位平台上占4个字节。所以如果有明确的要求,应该选择int32、int64或uint32、uint64。byte类型的底层类型是uint8。可以看下测试

?

1

2

3

4

5

6

7

8

9

10

11

package main

import (

"fmt"

"reflect"

)

func main() {

var b byte = 'D'

fmt.Printf("output: %v\n", reflect.TypeOf(b).Kind())

}

?

1

2

3

4

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

output: uint8

数据类型分为静态类型和底层类型,相对于以上代码中的变量b来说,byte是它的静态类型,uint8是它的底层类型。这点很重要,以后经常会用到这个概念。

rune类型

rune是int32的别名,用于表示unicode字符。通常在处理中文的时候需要用到它,当然也可以用range关键字。

string类型

string类型的底层是一个C struct。

?

1

2

3

4

5

struct String

{

byte*   str;

intgo   len;

};

成员str为字符数组,len为字符数组长度。golang的字符串是不可变类型,对string类型的变量初始化意味着会对底层结构的初始化。至于为什么str用byte类型而不用rune类型,这是因为golang的for循环对字符串的遍历是基于字节的,如果有必要,可以转成rune切片或使用range来迭代。我们来看个例子:

$GOPATH/src

----basictype_test

--------main.go

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

package main

import (

"fmt"

"unsafe"

)

func main() {

var str string = "hi, 陈一回~"

p := (*struct {

str uintptr

len int

})(unsafe.Pointer(&str))

fmt.Printf("%+v\n", p)

}

?

1

2

3

4

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

output: &{str:135100456 len:14}

内建函数len对string类型的操作是直接从底层结构中取出len值,而不需要额外的操作,当然在初始化时必需同时初始化len的值。

slice类型

slice类型的底层同样是一个C struct。

?

1

2

3

4

5

6

struct  Slice

{               // must not move anything

byte*   array;      // actual data

uintgo  len;        // number of elements

uintgo  cap;        // allocated number of elements

};

包括三个成员。array为底层数组,len为实际存放的个数,cap为总容量。使用内建函数make对slice进行初始化,也可以类似于数组的方式进行初始化。当使用make函数来对slice进行初始化时,第一个参数为切片类型,第二个参数为len,第三个参数可选,如果不传入,则cap等于len。通常传入cap参数来预先分配大小的slice,避免频繁重新分配内存。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

package main

import (

"fmt"

"unsafe"

)

func main() {

var slice []int32 = make([]int32, 5, 10)

p := (*struct {

array uintptr

len   int

cap   int

})(unsafe.Pointer(&slice))

fmt.Printf("output: %+v\n", p)

}

?

1

2

3

4

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

output: &{array:406958176 len:5 cap:10}

由于切片指向一个底层数组,并且可以通过切片语法直接从数组生成切片,所以需要了解切片和数组的关系,否则可能就会不知不觉的写出有bug的代码。比如有如下代码:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

package main

import (

"fmt"

)

func main() {

var array = [...]int32{1, 2, 3, 4, 5}

var slice = array[2:4]

fmt.Printf("改变slice之前: array=%+v, slice=%+v\n", array, slice)

slice[0] = 234

fmt.Printf("改变slice之后: array=%+v, slice=%+v\n", array, slice)

}

?

1

2

3

4

5

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

改变slice之前: array=[1 2 3 4 5], slice=[3 4]

改变slice之后: array=[1 2 234 4 5], slice=[234 4]

您可以清楚的看到,在改变slice后,array也被改变了。这是因为slice通过数组创建的切片指向这个数组,也就是说这个slice的底层数组就是这个array。因此很显然,slice的改变其实就是改变它的底层数组。当然如果删除或添加元素,那么len也会变化,cap可能会变化。

那这个slice是如何指向array呢?slice的底层数组指针指向array中索引为2的元素(因为切片是通过array[2:4]来生成的),len记录元素个数,而cap则等于len。

之所以说cap可能会变,是因为cap表示总容量,添加或删除操作不一定会使总容量发生变化。我们接着再来看另一个例子:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

package main

import (

"fmt"

)

func main() {

var array = [...]int32{1, 2, 3, 4, 5}

var slice = array[2:4]

slice = append(slice, 6, 7, 8)

fmt.Printf("改变slice之前: array=%+v, slice=%+v\n", array, slice)

slice[0] = 234

fmt.Printf("改变slice之后: array=%+v, slice=%+v\n", array, slice)

}

?

1

2

3

4

5

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

改变slice之前: array=[1 2 3 4 5], slice=[3 4 6 7 8]

改变slice之后: array=[1 2 3 4 5], slice=[234 4 6 7 8]

经过append操作之后,对slice的修改并未影响到array。原因在于append的操作令slice重新分配底层数组,所以此时slice的底层数组不再指向前面定义的array。

但是很显然,这种规则对从切片生成的切片也是同样的,请看代码:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

package main

import (

"fmt"

)

func main() {

var slice1 = []int32{1, 2, 3, 4, 5}

var slice2 = slice1[2:4]

fmt.Printf("改变slice2之前: slice1=%+v, slice2=%+v\n", slice1, slice2)

slice2[0] = 234

fmt.Printf("改变slice2之后: slice1=%+v, slice2=%+v\n", slice1, slice2)

}

?

1

2

3

4

5

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

改变slice2之前: slice1=[1 2 3 4 5], slice2=[3 4]

改变slice2之后: slice1=[1 2 234 4 5], slice2=[234 4]

slice1和slice2共用一个底层数组,修改slice2的元素导致slice1也发生变化。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

package main

import (

"fmt"

)

func main() {

var slice1 = []int32{1, 2, 3, 4, 5}

var slice2 = slice1[2:4]

fmt.Printf("改变slice2之前: slice1=%+v, slice2=%+v\n", slice1, slice2)

slice2 = append(slice2, 6, 7, 8)

fmt.Printf("改变slice2之后: slice1=%+v, slice2=%+v\n", slice1, slice2)

}

?

1

2

3

4

5

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

改变slice2之前: slice1=[1 2 3 4 5], slice2=[3 4]

改变slice2之后: slice1=[1 2 3 4 5], slice2=[3 4 6 7 8]

而append操作可令slice1或slice2重新分配底层数组,因此对slice1或slice2执行append操作都不会相互影响。

接口类型

接口在golang中的实现比较复杂,在$GOROOT/src/pkg/runtime/type.h中定义了:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

struct Type

{

uintptr size;

uint32 hash;

uint8 _unused;

uint8 align;

uint8 fieldAlign;

uint8 kind;

Alg *alg;

void *gc;

String *string;

UncommonType *x;

Type *ptrto;

};

在$GOROOT/src/pkg/runtime/runtime.h中定义了:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

struct Iface

{

Itab*   tab;

void*   data;

};

struct Eface

{

Type*   type;

void*   data;

};

struct  Itab

{

InterfaceType*  inter;

Type*   type;

Itab*   link;

int32   bad;

int32   unused;

void    (*fun[])(void);

};

interface实际上是一个结构体,包括两个成员,一个是指向数据的指针,一个包含了成员的类型信息。Eface是interface{}底层使用的数据结构。因为interface中保存了类型信息,所以可以实现反射。反射其实就是查找底层数据结构的元数据。完整的实现在:$GOROOT/src/pkg/runtime/iface.c 。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

package main

import (

"fmt"

"unsafe"

)

func main() {

var str interface{} = "Hello World!"

p := (*struct {

tab  uintptr

data uintptr

})(unsafe.Pointer(&str))

fmt.Printf("%+v\n", p)

}

?

1

2

3

4

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

output: &{tab:134966528 data:406847688}

map类型

golang的map实现是hashtable,源码在:$GOROOT/src/pkg/runtime/hashmap.c 。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

struct Hmap

{

uintgo  count;

uint32  flags;

uint32  hash0;

uint8   B;

uint8   keysize;

uint8   valuesize;

uint16  bucketsize;

byte    *buckets;

byte    *oldbuckets;

uintptr nevacuate;

};

测试代码如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

package main

import (

"fmt"

"unsafe"

)

func main() {

var m = make(map[string]int32, 10)

m["hello"] = 123

p := (*struct {

count      int

flags      uint32

hash0      uint32

B          uint8

keysize    uint8

valuesize  uint8

bucketsize uint16

buckets    uintptr

oldbuckets uintptr

nevacuate  uintptr

})(unsafe.Pointer(&m))

fmt.Printf("output: %+v\n", p)

}

?

1

2

3

4

$ cd $GOPATH/src/basictype_test

$ go build

$ ./basictype_test

output: &{count:407032064 flags:0 hash0:134958144 B:192 keysize:0 valuesize:64 bucketsize:30063 buckets:540701813 oldbuckets:0 nevacuate:0}

golang的坑还是比较多的,需要深入研究底层,否则很容易掉坑里。

参考资料:

http://blog.csdn.net/sryan/article/details/46514883

【GoLang】golang底层数据类型实现原理的更多相关文章

  1. golang之基本数据类型

    目录 一.golang之基本数据类型 1. 整型 (1)有符号(范围是负数.0和正数) (2)无符号(范围是0和正数) (3)特殊整型 (4)数字字面量语法 2. 浮点型 3. 复数类型 4. 布尔类 ...

  2. golang自己定义数据类型查询与插入postgresql中point数据

    golang自己定义数据类型查询与插入postgresql中point数据 详细代码例如以下: package main import ( "bytes" "databa ...

  3. Golang的基础数据类型-字符串型

    Golang的基础数据类型-字符串型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.字符型概述 上一篇博客学习了使用单引号括起来的单个字符就是字符类型,在Golang中有两种表 ...

  4. Golang的基础数据类型-字符型

    Golang的基础数据类型-字符型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.字符型概述 Go语言中的字符有两种,即uint8类型和rune类型. uint8类型: 我们也 ...

  5. Golang的基础数据类型-浮点型

    Golang的基础数据类型-浮点型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.浮点型概述 Go语言提供两种精度的浮点数,即float32和float64,其中float32 ...

  6. Golang的基础数据类型-整型

    Golang的基础数据类型-整型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.整型概述 Go语言的整数类型一共有10个. int: 默认是有符号(signed)整形,占用空间 ...

  7. Golang的基础数据类型-布尔型

    Golang的基础数据类型-布尔型 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.bool类型概述 bool类型的取值范围: bool类型的值只有两种,其值不为真即为假,可以用 ...

  8. Golang Sync.WaitGroup 使用及原理

    Golang Sync.WaitGroup 使用及原理 使用 func main() { var wg sync.WaitGroup for i := 0; i < 10; i++ { wg.A ...

  9. 从底层谈WebGIS 原理设计与实现(三):WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理(转载)

    从底层谈WebGIS 原理设计与实现(三):WebGIS前端地图显示之根据地理范围换算出瓦片行列号的原理 1.前言   在上一节中我们知道了屏幕上一像素等于实际中多少单位长度(米或经纬度)的换算方法, ...

随机推荐

  1. top命令详解(转,详细)

    来源:脚本之家(http://www.jb51.net/article/40807.htm) 本文通过一个运行中的WEB服务器的top监控截图,讲述top视图中的各种数据的含义,还包括视图中各进程(任 ...

  2. git merge 和 git rebase 小结

    Git merge是用来合并两个分支的. git merge b # 将b分支合并到当前分支 同样 git rebase b,也是把 b分支合并到当前分支 ---------------------- ...

  3. sqlmap注入检测经验0x01

    某日偶遇一SQLInjection Point,MSSQL 2008,已开启显错模式. 马上扔进SQLMap跑,一路顺畅,竟然还是SA的权限,心想运气真好,无论如何都拿定了. 数据库,表,列都列出来了 ...

  4. iOS-马上着手开发iOS应用应用程序-第一部分介绍

    教程:基础 main 中的 main.m 函数会调用自动释放池 (autorelease pool) 中的 UIApplicationMain 函数. @autoreleasepool { retur ...

  5. SSH+Ext+mysql快速开发

    一.需要知识点 1.SSH整合 2.EXT使用 以及深入细节点 二.小功能实现 1.Servlet实现校验码验证 2.首页布局实现 3.struts错误信息显示(struts标签使用) 4.首页整体布 ...

  6. MySQL5.7 Replication主从复制配置教程

    最近配置mysql5.7主从复制的时候碰到了些问题,老老实实按老版本的步骤配置会有错误,后来自己查看了官方文档,才解决了问题,在这里总结一下5.7的配置步骤, 大体步骤跟老版本的还是一样的,只是有一些 ...

  7. php 快速排序法

    function quicksort(array $arr = array()){ $len = count($arr); if ($len > 1) { $key = $arr[0]; $l_ ...

  8. mysql tinyint

    在MySQL的数据类型中,Tinyint的取值范围是:带符号的范围是-128到127.无符号的范围是0到255(见官方<MySQL 5.1参考手册>http://dev.mysql.com ...

  9. PHP中获取内网用户MAC地址(WINDOWS/linux)的实现代码

    做一个内网根据MAC地址自动登录的应用,在WINDOW 2003可以正常使用,函数如下   复制代码 代码如下: function ce_getmac() { if(PHP_OS == 'WINNT' ...

  10. AngularJS 使用ngOption实现下拉列表

    最近使用到了ngOption实现下拉选择列表,由于需要实现分组等功能,百度了下没有太好的文章,就百度到一篇英文的帖子,按照其中的代码很顺利的搞定了. 本篇根据文中代码,详细讲述下如何实现下拉列表 更多 ...