【动态规划】简单背包问题II
问题 B: 【动态规划】简单背包问题II
时间限制: 1 Sec 内存限制: 64 MB
提交: 21 解决: 14
[提交][状态][讨论版]
题目描述
李旭琳:“你说得对,这和墨老师曾告诉我们的‘日中则昃,月满则亏’是一个道理。”所以,现在的问题是,她们有一个背包容量为v(正整数,0≤v≤20000),同时有n个魔法石(0≤n≤30),每个魔法石有一个体积 (正整数)。要求从n个魔法石中,任取若干个装入包内,使背包的剩余空间为最小。
输入
输出
样例输入
24
6
8
3
12
7
9
7
样例输出
0
代码:
#include<cstdio>
#include <iostream>
#include <cstring> using namespace std; int dp[][]; int main(){
int T;
int M;
int t[];
int p[];
while(scanf("%d %d",&T,&M)!=EOF){
for(int i=;i<=M;i++){
for(int j=;j<=T;j++){
dp[i][j]=;
}
}
dp[][]=;
for(int i=;i<=M;i++){
scanf("%d",&t[i]);
}
for(int i=;i<=M;i++){
for(int j=;j<=T;j++){
if(j>=t[i]){
dp[i][j]=max(dp[i-][j],dp[i-][j-t[i]]+t[i]);
}else{
dp[i][j]=dp[i-][j];
}
}
} printf("%d\n",T-dp[M][T]);
}
return ;
}
【动态规划】简单背包问题II的更多相关文章
- lintcode:背包问题II
背包问题II 给出n个物品的体积A[i]和其价值V[i],将他们装入一个大小为m的背包,最多能装入的总价值有多大? 注意事项 A[i], V[i], n, m均为整数.你不能将物品进行切分.你所挑选的 ...
- 简单背包问题(0032)-swust oj
简单背包问题(0032) Time limit(ms): 1000 Memory limit(kb): 65535 Submission: 5657 Accepted: 1714 Accepted 搜 ...
- 多重背包问题II
多重背包问题II 总体积是m,每个小物品的体积是A[i] ,每个小物品的数量是B[i],每个小物品的价值是C[i] 求能够放入背包内的最大物品能够获得的最大价值 和上一个很类似 上一题体积就是价值,这 ...
- 5. 多重背包问题 II 【用二进制优化】
多重背包问题 II 描述 有 NN 种物品和一个容量是 VV 的背包. 第 ii 种物品最多有 sisi 件,每件体积是 vivi,价值是 wiwi. 求解将哪些物品装入背包,可使物品体积总和不超过背 ...
- [Dynamic Programming]动态规划之背包问题
动态规划之背包问题 例题 现有4样物品n = ['a', 'b', 'c', 'd'],重量分别为w = [2, 4, 5, 3],价值分别为v = [5, 4, 6, 2].背包最大承重c = 9. ...
- 记录结果再利用的"动态规划"之背包问题
参考<挑战程序设计竞赛>p51 https://www.cnblogs.com/Ymir-TaoMee/p/9419377.html 01背包问题 问题描述:有n个重量和价值分别为wi.v ...
- 记忆搜索与动态规划——DP背包问题
题目描述 01背包问题 有n个重量和价值分别为\(w_i,v_i\)的物品.从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中价值中总和的最大值. 限制条件 1 <= n <= 10 ...
- 动态规划_01背包问题_Java实现
原文地址:http://blog.csdn.net/ljmingcom304/article/details/50328141 本文出自:[梁敬明的博客] 1.动态规划 什么是动态规划?动态规划就是将 ...
- 【动态规划/多重背包问题】POJ1014-Dividing
多重背包问题的优化版来做,详见之前的动态规划读书笔记. dp[i][j]表示前i中数加得到j时第i种数最多剩余几个(不能加和得到i的情况下为-1)递推式为: dp[i][j]=mi(dp[i-1][j ...
随机推荐
- JAVA浅析字节流与字符流
[概括] 字节流是通用的,既可以操作图片又可以操作文本,但一般都用于操作图片.字符流是基于字节流的,因为字符流内部融合编码表,所以用来操作文本. 1.在字节输入流中能根据文件的大小来开辟数组空间 Fi ...
- [原] Android 自定义View 密码框 例子
遵从准则 暴露您view中所有影响可见外观的属性或者行为. 通过XML添加和设置样式 通过元素的属性来控制其外观和行为,支持和重要事件交流的事件监听器 详细步骤见:Android 自定义View步骤 ...
- 【AngularJS】—— 8 自定义指令
AngularJS支持用户自定义标签属性,在不需要使用DOM节点操作的情况下,添加自定义的内容. 前面提到AngularJS的四大特性: 1 MVC 2 模块化 3 指令 4 双向数据绑定 下面将会介 ...
- php防注入
引发 SQL 注入攻击的主要原因,是因为以下两点原因: 1. php 配置文件 php.ini 中的 magic_quotes_gpc选项没有打开,被置为 off 2. 开发者没有对数据类型进行检查和 ...
- codevs5164 逆波兰表达式
题目描述 Description 逆波兰表达式是一种把运算符前置的算术表达式(又叫前缀表达式),例如普通的表达式2 + 3的逆波兰表示法为+ 2 3.逆波兰表达式的优点是运算符之间不必有优先级关系,也 ...
- 湖南附中模拟day1 金坷垃
题意描述"没有金坷垃,怎么种庄稼?"花花家有一块田,所有庄稼排成了 N 行 M 列.初始时,每棵庄稼都有一个自己的高度hi;j.花花每次可以使用 1mol 的金克拉使一棵庄稼的高度 ...
- Oracle锁的机制
一.为什么要有锁的机制 我们都知道数据库是一个多用户使用的共享资源.当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况.若对并发操作不加控制就可能会读取和存储不正确的数据,破 ...
- httpd服务访问控制
客户机地址限制 通过配置Order.Deny from.Allow from 来限制客户机 allow.deny :先"允许"后"拒绝" ,默认拒绝所有为明确的 ...
- css3 animation 属性众妙
转自:凹凸实验室(https://aotu.io/notes/2016/11/28/css3-animation-properties/) 本文不会详细介绍每个 css3 animation 属性(需 ...
- cocos2dx 做test遇到一个问题,记录下来
我新建了一个group,然后再group里面创建一个文件A.h,再A.h中#include group同一级的文件CBaseTest.h,方法是: #include "../BaseTest ...