HDU 1869六度分离

Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

Input

本题目包含多组测试,请处理到文件结束。 
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。 
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。 
除了这M组关系,其他任意两人之间均不相识。 

Output

对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。

Sample Input

8 7
0 1
1 2
2 3
3 4
4 5
5 6
6 7
8 8
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 0

Sample Output

Yes
Yes //这个题目就可以说是BFS和Dijkstra算法的相同了,BFS是权值为1的递增的Dijkstra算法,Dijkstra算法每条边的权值不同,相对BFS要多一个权值的计数判断。 //AC代码
#include"algorithm"
#include"iostream"
#include"cstring"
#include"cstdlib"
#include"string"
#include"cstdio"
#include"vector"
#include"cmath"
#include"queue"
using namespace std;
typedef long long LL;
#define memset(x,y) memset(x,y,sizeof(x))
#define memcpy(x,y) memcpy(x,y,sizeof(x))
#define MX 401 int n,m;
const int dij_v=1005;
const int dij_edge=10005; template <class T>
struct Dijkstra {
struct Edge {
int v,nxt;
T w;
} E[dij_edge<<1]; int Head[dij_v],erear;
T p[dij_v],INF; typedef pair< T ,int > PII;
void edge_init() {
erear=0;
memset(Head,-1);
} void edge_add(int u,int v,T w) {
E[erear].v=v;
E[erear].w=w;
E[erear].nxt=Head[u];;
Head[u]=erear++;
} void run(int u) {
memset(p,0x3f);
INF=p[0];
priority_queue<PII ,vector<PII >,greater<PII > >Q;
while(!Q.empty()) {
Q.pop();
}
Q.push(PII(0,u));
p[u]=0;
while(!Q.empty()) {
PII a=Q.top();
Q.pop();
int u=a.second;
if(a.first!=p[u])continue;
for(int i=Head[u]; ~i; i=E[i].nxt) {
int v=E[i].v;
T w=E[i].w;
if(p[u] + w <p[v]) {
p[v]=w+p[u];
Q.push(PII(p[v],v));
}
}
}
sort(p,p+n);
}
}; Dijkstra<int > dij; int main() {
while(~scanf("%d%d",&n,&m)) {
if(!n&&!m)break;
dij.edge_init();
for(int i=1; i<=m; i++) {
int u,v;
scanf("%d%d",&u,&v);
dij.edge_add(u,v,1);
dij.edge_add(v,u,1);
}
int flag=1;
for(int i=0; i<n; i++) {
dij.run(i);
if(dij.p[n-1]>7)flag=0;
}
printf("%s\n",flag?"Yes":"No");
}
return 0;
}

  

ACM: HDU 1869 六度分离-Dijkstra算法的更多相关文章

  1. HDU 1869 六度分离

    六度分离 http://acm.hdu.edu.cn/showproblem.php?pid=1869 Problem Description 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一 ...

  2. hdu 1869 六度分离(最短路floyd)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others)    M ...

  3. HDU 1869 六度分离 最短路

    解题报告: 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人, ...

  4. HDU - 1869 六度分离 Floyd多源最短路

    六度分离 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即 ...

  5. HDU 1869 六度分离【floyd】

    题意:给出n个人,m个关系,问是否满足任意两个人之间的距离通过6个人就可以连接 用floyd就可以了,注意距离是大于7 #include<iostream> #include<cst ...

  6. HDU ACM 1869 六度分离(Floyd)

    六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. ACM: HDU 3790 最短路径问题-Dijkstra算法

    HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  8. ACM: HDU 2544 最短路-Dijkstra算法

    HDU 2544最短路 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descrip ...

  9. ACM: HDU 1874 畅通工程续-Dijkstra算法

    HDU 1874 畅通工程续 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Desc ...

随机推荐

  1. 登录到mysql查看binlog日志

    查看当前第一个binlog文件的内容 show binlog events; 查看指定binlog文件内容 show binlog events in 'mysql-bin.000002'; 查看当前 ...

  2. gitlab 用户头像不能显示的问题

    [root@GitLab assets]# cat /etc/gitlab/gitlab.rb # Change the external_url to the address your users ...

  3. DOM – 7.动态创建DOM + 8.innerText innerHTML value

    7.动态创建DOM 8.innerText  innerHTML  value 7+8 练习:案例:点击按钮动态增加网站列表,分两列,第一列为网站的名字,第二列为带网站超链接的网站名.增加三行常见网站 ...

  4. ODATA WEB API(一)---扩展使用

    一.概述 时间也算充足,抽点时间总结下OData的常用的使用方式,开放数据协议(OData)是一个查询和更新数据的Web协议.OData应用了web技术如HTTP.Atom发布协议(AtomPub)和 ...

  5. GMap.Net开发之自定义Marker

    上一篇文章介绍了如何在WinForm和WPF中使用GMap控件,这篇介绍下GMap中Marker的使用. 自定义Marker,可以理解为在地图上自定义图标(Custom Marker),先看看GMap ...

  6. log4net的配置与使用

    log4net解决的问题是在.Net下提供一个记录日志的框架,它提供了向多种目标写入的实现,比如利用log4net可以方便地将日志信息记录到文件.控制台.Windows事件日志和数据库(包括MS SQ ...

  7. HR外包系统 - 员工项目 薪资项目 考勤项目 -管理

    项目管理-包括员工项目 薪资项目 考勤项目 一 后台总公司定义项目-前台分公司选择项目,定义别名-分公司客户选择员工项目,定义别名 分公司下面-新建薪资类别-薪资类别下面选择要的薪资和考勤项目. 二 ...

  8. HDU 5807 Keep In Touch DP

    Keep In Touch Problem Description   There are n cities numbered with successive integers from 1 to n ...

  9. java基本数据类型及相互间的转换

    1.首先复习一下java的基本数据类型,见下图 2.比较他们的字节数 备注:1字节(Byte)=8位(Bit) 3.转换中的知识点 *java中整数类型默认的int类型:小数类型默认的double: ...

  10. AJAX案例三:处理XML响应

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...