降维技术---PCA
数据计算和结果展示一直是数据挖掘领域的难点,一般情况下,数据都拥有超过三维,维数越多,处理上就越吃力。所以,采用降维技术对数据进行简化一直是数据挖掘工作者感兴趣的方向。
对数据进行简化的好处:使得数据集更易于使用,降低算法的计算开销,去除噪声,使得结果易懂。
主成分分析法(PCA)是一种常用的降维技术。在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向。
为什么选择最大方差的方向和方差的正交方向?
如果想要画出一条直线,使得直线要尽可能多的覆盖坐标轴中的点,在下图中的三条直线中,B直线为最大方差代表的直线,说明覆盖数据信息最多,C直线为B直线的垂线,它是覆盖数据次大差异性的直线。

PCA的优点:降低数据的复杂性,识别最重要的多个特征。
PCA的原理:借助于正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量。这在代数上表现为将原随机向量的协方差矩阵变换为对角形阵。
PCA的实现:通过对协方差矩阵进行特征分解,以得出数据的主成分(即特征向量)和权值(即特征值)
将原始数据转换成前N个主成分的具体实现步骤:
1.去除平均值
2.计算协方差矩阵
3.计算协方差矩阵的特征值和特征向量
4.将特征值从大到小排序
5.保留最上面的N个特征向量
6.将数据转换到上述N个特征向量构建的新空间中
代码实现
def PCA(dataMatrix, topNFeature=999):
meanVals = mean(dataMatrix, axis=0)
meanRemovedMatrix = dataMatrix - meanVals #1. remove mean covMat = cov(meanRemovedMatrix, rowvar=0) #2. covariance matrix
eigVals,eigVects = linalg.eig(mat(covMat)) #3. compute matrix eigenvalues and eigenvectors
eigValInd = argsort(eigVals) #4. sort, sort goes smallest to largest
eigValInd = eigValInd[:-(topNFeature+1):-1] #5_1 cut off unwanted dimensions
redEigVects = eigVects[:,eigValInd] #5_2 reorganize eig vects largest to smallest
lowDDataMat = meanRemovedMatrix * redEigVects #6 transform data into new dimensions
return lowDDataMat
降维技术---PCA的更多相关文章
- PCA降维技术
PCA降维技术 PCA 降维 Fly Time: 2017-2-28 主成分分析(PCA) PCA Algorithm 实例 主成分分析(PCA) 主成分分析(Principal Component ...
- [机器学习之13]降维技术——主成分分析PCA
始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算 ...
- 机器学习算法-PCA降维技术
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特 ...
- 数据降维技术(2)—奇异值分解(SVD)
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分 ...
- 降维算法-PCA主成分分析
1.PCA算法介绍主成分分析(Principal Components Analysis),简称PCA,是一种数据降维技术,用于数据预处理.一般我们获取的原始数据维度都很高,比如1000个特征,在这1 ...
- 数据降维技术(1)—PCA的数据原理
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降 ...
- ML: 降维算法-PCA
PCA (Principal Component Analysis) 主成份分析 也称为卡尔胡宁-勒夫变换(Karhunen-Loeve Transform),是一种用于探索高维数据结 ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- 机器学习基础与实践(三)----数据降维之PCA
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法 ...
随机推荐
- Educational Codeforces Round 15 [111110]
注意一个词:连续 #include<stdio.h> #include<stdlib.h> #include<string.h> #include<bits/ ...
- datanode启动不了
报如下异常:*org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.hdfs.server.protocol.DisallowedDatano ...
- JS正则获取参数值
var geturl = function(url){ var ret = {}; var queryStr=url.replace(/^[^\?#]*\??/g,'').replace(/#DIAL ...
- TYVJ P3522 &&洛谷 P1135 奇怪的电梯 Label:bfs
题目描述 呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯.大楼的每一层楼都可以停电梯,而且第i层楼(1<=i<=N)上有一个数字Ki(0<=Ki<=N).电梯只有四个按钮:开 ...
- HTML5与移动端web学习笔记
HTML5 提供了很多新的功能,主要有: 新的 HTML 元素,例如 section, nav, header, footer, article 等 用于绘画的 Canvas 元素 用于多媒体播放的 ...
- UESTC 1307 windy数(数位DP)
题目链接 这其实入门题,不过,我写了好一会,还是一直wa,图样... #include <iostream> #include <cstdio> #include <cs ...
- 两种不同png图片的在项目中的运用
png图片主要分为两种 png-8和png-24. PNG8和PNG24后面的数字则是代表这种PNG格式最多可以索引和存储的颜色值.”8″代表2的8次方也就是256色,而24则代表2的24次方大概有1 ...
- 获取UILabel宽度的方法
- (CGFloat)labelLength:(NSString *)str font:(CGFloat)font{ str = ISSTRING(str) ? str : @"" ...
- 30分钟学会使用grunt打包前端代码
http://www.cnblogs.com/yexiaochai/p/3603389.html
- springboot 添加job定时任务
@SpringBootApplication@ComponentScan("com.xx")@EnableScheduling //定时任务扫描 此处用该注解,容器启动自动扫描pu ...