假设存在一个满足条件的长度为i的不下降序列(显然是一定存在的)那么只需要从中选出i个数即可

(不必在意选出具体数的大小,可以把满足条件的序列写下来,选几个数感受一下)。

但是$n \choose m $里的 \(m\) 的是就是 \((r-l+1)\) 吗?

乍一看是这样的,但是这样会出现一个问题,单调不下降子序列中的数可以重复,但如果只是从\(l\)到\(r\)去选数,那将会使结果变小。

所以可以先找出(当然是在脑子里找出)满足条件的长度为\(i\)的序列,然后和\(l\)到\(r\)这几个数合起来,从这几个数里面选出\(i\)个数。即 \(r-l+1+i\choose r-l+1\)

然后就从1$ \rightarrow $n枚举长度再求和即可

所以答案为

\[\sum ^n _{i=1} {\ r \ - \ l\ + \ 1 \ + \ i \choose \ i }
\]

但是此时O(\(n^+\))的时间复杂度一定是不可行的,而\(i\)的值又一直发生改变,无法化简。

所以我们可以把 \(r-l+1+i \choose i\) 写为\(r-l+1+i \choose r-l+1\),再设\(x=r-l+1\)那么原式变为

\[\sum ^n _{i=1} {x+i\choose \ i }
\]

也就是 $\qquad $ \({x+1 \choose x}\)+\({x+2 \choose x}\)+\({x+3 \choose x}\)+……+\({x+n \choose x}\)

接下来就是化简……

首先看一下\(n \choose m\) +\(n \choose m+1\)的结果是什么

\[{n\choose m}+{n\choose m+1}
\]
\[={\frac{n!}{m!*(n-m)!}} + { \frac {n!} {(m+1)!*(n-m-1)!}}
\]
\[={\frac{n!*(m+1)}{(m+1)!*(n-m!)}}+{\frac{n!*(n-m)}{(m+1)!*(n-m)!}}
\]
\[={\frac{(m+1+n-m)*n!}{(m+1)!*(n-m)!} }
\]
\[={\frac{(n+1)!}{(m+1)!*(n-m)!}}
\]
\[= {n+1 \choose m+1}
\]

所以有$${n\choose m}+{n\choose m+1}={n+1 \choose m+1}$$

那么给答案前面加一个\(x+1 \choose x+1\),根据刚刚的公式,\(x+1 \choose x+1\) + \(x+1 \choose x\) = \(x+2 \choose x+1\)

$\quad $$\quad $$\quad $$\quad $ 而\(x+2 \choose x\) + \(x+2 \choose x+1\) = \(x+3 \choose x+1\)

以此类推,最终答案是\({x+n\choose n}-1\)

附上代码
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define what_can_I_say main
#define crash_on_you 0
const int N=1e9+100,p=1000003;
int i,j,n,m,ans,t,l,r,x,fact[p+100],ny[p+100];
int op(int a,int b){
int ans=1;
while(b){
if(b&1)ans=ans*a%p;
a=a*a%p;
b>>=1;
}
return ans;
}
int c(int n,int m){
if(n<m)return 0;
return 1ll*(1ll*fact[n]*op(fact[m],p-2)%p)*op(fact[n-m],p-2)%p;
}
int lucas(int n,int m){
if(n<=p&&m<=p)return c(n,m);
return c(n%p,m%p)*lucas(n/p,m/p);
}
signed what_can_I_say(){
fact[0]=1;
for(i=1;i<p;i++)fact[i]=fact[i-1]*i%p;
scanf("%lld",&t);
while(t--){
scanf("%lld%lld%lld",&n,&l,&r);
x=r-l+1;
printf("%lld\n",(lucas(x+n,n)-1+p)%p);
}
return crash_on_you;
}

BZOJ 4403序列统计的更多相关文章

  1. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  2. BZOJ 4403: 序列统计 数学 lucas

    4403: 序列统计 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4403 Description 给定三个正整数N.L和R,统计长度在 ...

  3. bzoj 4403 序列统计 卢卡斯定理

    4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...

  4. BZOJ 4403 序列统计(Lucas)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4403 [题目大意] 给定三个正整数N.L和R,统计长度在1到N之间, 元素大小都在L到 ...

  5. [BZOJ 4403]序列统计

    Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...

  6. bzoj 4403 序列统计——转化成组合数的思路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 先说说自己的想法吧. 设f[ i ][ j ]表示当前在倒数第 i 个位置,当前和后面 ...

  7. bzoj 4403: 序列统计【lucas+组合数学】

    首先,给一个单调不降序列的第i位+i,这样就变成了单调上升序列,设原来数据范围是(l,r),改过之后变成了(l+1,r+n) 在m个数里选长为n的一个单调上升序列的方案数为\( C_m^n \),也就 ...

  8. 【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R, ...

  9. BZOJ 3992 序列统计

    Description 小C有一个集合\(S\),里面的元素都是小于\(M\)的非负整数.他用程序编写了一个数列生成器,可以生成一个长度为\(N\)的数列,数列中的每个数都属于集合\(S\). 小C用 ...

  10. [BZOJ 3992][SDOI2015]序列统计

    3992: [SDOI2015]序列统计 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 2275  Solved: 1090[Submit][Stat ...

随机推荐

  1. go语言实现扫雷

    源码如下 package main import ( "archive/zip" "bytes" "encoding/base64" &qu ...

  2. Java interface 接口的使用 implements 实现----

    1 package com.bytezreo.interfacetest; 2 3 /** 4 * 5 * @Description interface 接口的使用 implements 实现---- ...

  3. 2、hystrix原理

    hystrix熔断机制 1.隔离机制 线程隔离: Hystrix在用户请求和服务之间加入了线程池. Hystrix为每个依赖调用分配一个小的线程池,如果线程池已满调用将被立即拒绝,默认不采用排队.加速 ...

  4. dist目录打war包命令 jar -cvf yourName_web.war *

    进入dist目录 "build:war": "cd dist && jar -cvf ../yourName_web.war *",

  5. TI工程师总结的判断ADS129x是否工作正常的方法步骤

    当大多数 ADC 出现无响应时,可以通过一些基本的调试技术帮助验证器件是否仍然正常工作.以下是 ADS129x 器件出现无响应时需要采取的一些基本步骤: 为器件通电.然后探测器件电源引脚或最近的去耦电 ...

  6. 【stras-one】星念漫画下载器

    原文链接:[stras-one]星念漫画下载器 - Stars-One的杂货小窝 一款将在线漫画保存到本地的下载工具 应一位蓝奏云批量下载器的用户的要求,实现了这款漫画下载的工具开发, 一直没时间,鸽 ...

  7. tomcat报错Exception loading sessions from persistent storage解决方案

    现象:项目在重启时报错:严重: Exception loading sessions from persistent storage的问题.该问题的原因是tomcat的session持久化机制引起的, ...

  8. Android视音频基础知识

    学术概念 采样和采样频率: ⼀秒钟内采样的次数称为采样频率.采样频率越⾼,越接近原始信号,但是也加⼤了运算处理的复杂度.根据Nyquist采样定理,要想重建原始信号,采样频率必须⼤于信号中最⾼频率的两 ...

  9. 07.Java类加载问题

    目录介绍 7.0.0.1 Java内存模型里包含什么?程序计数器的作用是什么?常量池的作用是什么? 7.0.0.2 什么是类加载器?类加载器工作机制是什么?类加载器种类?什么是双亲委派机制? 7.0. ...

  10. Android Graphics 多屏同显/异显

    " 亏功一篑,未成丘山.凿井九阶,不次水泽.行百里者半九十,小狐汔济濡其尾.故曰时乎,时不再来.终终始始,是谓君子." 01 前言 随着Android智能驾舱系统的普及各种信息交互 ...