摘要:本文将通过实践案例带大家掌握CutMix&Mixup。

本文分享自华为云社区《CutMix&Mixup详解与代码实战》,作者:李长安。

引言

最近在回顾之前学到的知识,看到了数据增强部分,对于CutMix以及Mixup这两种数据增强方式发现理解不是很到位,所以这里写了一个项目再去好好看这两种数据增强方式。最开始在目标检测中,未对数据的标签部分进行思考,对于图像的处理,大家是可以很好理解的,因为非常直观,但是通过阅读相关论文,查看一些相关的资料发现一些新的有趣的东西。接下来为大家讲解一下这两种数据增强方式。下图从左至右分别为原图、mixup、cutout、cutmix。

Mixup离线实现

Mixup相信大家有了很多了解,并且大家也能发现网络上有很多大神的解答,所以我这里就不在进行详细讲解了。

  • Mixup核心思想:两张图片采用比例混合,label也需要按照比例混合

  • 论文关键点
  1. 考虑过三个或者三个以上的标签做混合,但是效果几乎和两个一样,而且增加了mixup过程的时间。
  2. 当前的mixup使用了一个单一的loader获取minibatch,对其随机打乱后,mixup对同一个minibatch内的数据做混合。这样的策略和在整个数据集随机打乱效果是一样的,而且还减少了IO的开销。
  3. 在同种标签的数据中使用mixup不会造成结果的显著增强

下面的Cell为Mixup的图像效果展示,具体实现请参考下面的在线实现。

%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as Image
import numpy as np
im1 = Image.imread("work/data/10img11.jpg")
im1 = im1/255.
im2 = Image.imread("work/data/14img01.jpg")
im2 = im2/255.
for i in range(1,10):
lam= i*0.1
im_mixup = (im1*lam+im2*(1-lam))
plt.subplot(3,3,i)
plt.imshow(im_mixup)
plt.show()

CutMix离线实现

简单来说cutmix相当于cutout+mixup的结合,可以应用于各种任务中。

mixup相当于是全图融合,cutout仅仅对图片进行增强,不改变label,而cutmix则是采用了cutout的局部融合思想,并且采用了mixup的混合label策略,看起来比较make sense。

  • cutmix和mixup的区别是: 其混合位置是采用hard 0-1掩码,而不是soft操作,相当于新合成的两张图是来自两张图片的hard结合,而不是Mixup的线性组合。但是其label还是和mixup一样是线性组合。

下面的代码为了消除随机性,对cut的位置进行了固定,主要是为了展示效果。代码更改位置如下所示,注释的部分为大家通用的实现。

  # bbx1 = np.clip(cx - cut_w // 2, 0, W)
# bby1 = np.clip(cy - cut_h // 2, 0, H)
# bbx2 = np.clip(cx + cut_w // 2, 0, W)
# bby2 = np.clip(cy + cut_h // 2, 0, H)
bbx1 = 10
bby1 = 600
bbx2 = 10
bby2 = 600
%matplotlib inline
import glob
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [10,10]
import cv2
# Path to data
data_folder = f"/home/aistudio/work/data/"
# Read filenames in the data folder
filenames = glob.glob(f"{data_folder}*.jpg")
# Read first 10 filenames
image_paths = filenames[:4]
image_batch = []
image_batch_labels = []
n_images = 4
print(image_paths)
for i in range(4):
image = cv2.cvtColor(cv2.imread(image_paths[i]), cv2.COLOR_BGR2RGB)
image_batch.append(image)
image_batch_labels=np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]])
def rand_bbox(size, lamb):
W = size[0]
H = size[1]
cut_rat = np.sqrt(1. - lamb)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
# bbx1 = np.clip(cx - cut_w // 2, 0, W)
# bby1 = np.clip(cy - cut_h // 2, 0, H)
# bbx2 = np.clip(cx + cut_w // 2, 0, W)
# bby2 = np.clip(cy + cut_h // 2, 0, H)
bbx1 = 10
bby1 = 600
bbx2 = 10
bby2 = 600
return bbx1, bby1, bbx2, bby2
image = cv2.cvtColor(cv2.imread(image_paths[0]), cv2.COLOR_BGR2RGB)
# Crop a random bounding box
lamb = 0.3
size = image.shape
print('size',size)
def generate_cutmix_image(image_batch, image_batch_labels, beta):
c=[1,0,3,2]
# generate mixed sample
lam = np.random.beta(beta, beta)
rand_index = np.random.permutation(len(image_batch))
print(f'iamhere{rand_index}')
target_a = image_batch_labels
target_b = np.array(image_batch_labels)[c]
print('img.shape',image_batch[0].shape)
bbx1, bby1, bbx2, bby2 = rand_bbox(image_batch[0].shape, lam)
print('bbx1',bbx1)
print('bby1',bby1)
print('bbx2',bbx2)
print('bby2',bby2)
image_batch_updated = image_batch.copy()
image_batch_updated=np.array(image_batch_updated)
image_batch=np.array(image_batch)
image_batch_updated[:, bbx1:bby1, bbx2:bby2, :] = image_batch[[c], bbx1:bby1, bbx2:bby2, :]
# adjust lambda to exactly match pixel ratio
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (image_batch.shape[1] * image_batch.shape[2]))
print(f'lam is {lam}')
label = target_a * lam + target_b * (1. - lam)
return image_batch_updated, label
# Generate CutMix image
input_image = image_batch[0]
image_batch_updated, image_batch_labels_updated = generate_cutmix_image(image_batch, image_batch_labels, 1.0)
# Show original images
print("Original Images")
for i in range(2):
for j in range(2):
plt.subplot(2,2,2*i+j+1)
plt.imshow(image_batch[2*i+j])
plt.show()
# Show CutMix images
print("CutMix Images")
for i in range(2):
for j in range(2):
plt.subplot(2,2,2*i+j+1)
plt.imshow(image_batch_updated[2*i+j])
plt.show()
# Print labels
print('Original labels:')
print(image_batch_labels)
print('Updated labels')
print(image_batch_labels_updated)
['/home/aistudio/work/data/11img01.jpg', '/home/aistudio/work/data/10img11.jpg', '/home/aistudio/work/data/14img01.jpg', '/home/aistudio/work/data/12img11.jpg']
size (2016, 1512, 3)
iamhere[2 1 0 3]
img.shape (2016, 1512, 3)
bbx1 10
bby1 600
bbx2 10
bby2 600
lam is 1.0
Original Images

CutMix Images

Original labels:
[[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]]
Updated labels
[[1. 0. 0. 0.]
[0. 1. 0. 0.]
[0. 0. 1. 0.]
[0. 0. 0. 1.]]

Mixup&CutMix在线实现

大家需要注意的是,通常我们在实际的使用中都是使用在线的方式进行数据增强,也就是本小节所讲的方法,所以大家在实际的使用中可以使用下面的代码。mixup实现原理同cutmix相差不多,大家可以根据我下面的的代码更改一下即可。

!cd 'data/data97595' && unzip -q nongzuowu.zip
from paddle.io import Dataset
import cv2
import paddle
import random
# 导入所需要的库
from sklearn.utils import shuffle
import os
import pandas as pd
import numpy as np
from PIL import Image
import paddle
import paddle.nn as nn
from paddle.io import Dataset
import paddle.vision.transforms as T
import paddle.nn.functional as F
from paddle.metric import Accuracy
import warnings
warnings.filterwarnings("ignore")
# 读取数据
train_images = pd.read_csv('data/data97595/nongzuowu/train.csv')
# 划分训练集和校验集
all_size = len(train_images)
# print(all_size)
train_size = int(all_size * 0.8)
train_df = train_images[:train_size]
val_df = train_images[train_size:]
# CutMix 的切块功能
def rand_bbox(size, lam):
if len(size) == 4:
W = size[2]
H = size[3]
elif len(size) == 3:
W = size[0]
H = size[1]
else:
raise Exception
cut_rat = np.sqrt(1. - lam)
cut_w = np.int(W * cut_rat)
cut_h = np.int(H * cut_rat)
# uniform
cx = np.random.randint(W)
cy = np.random.randint(H)
bbx1 = np.clip(cx - cut_w // 2, 0, W)
bby1 = np.clip(cy - cut_h // 2, 0, H)
bbx2 = np.clip(cx + cut_w // 2, 0, W)
bby2 = np.clip(cy + cut_h // 2, 0, H)
return bbx1, bby1, bbx2, bby2
# 定义数据预处理
data_transforms = T.Compose([
T.Resize(size=(256, 256)),
T.Transpose(), # HWC -> CHW
T.Normalize(
mean=[0, 0, 0], # 归一化
std=[255, 255, 255],
to_rgb=True)
])
class JSHDataset(Dataset):
def __init__(self, df, transforms, train=False):
self.df = df
self.transfoms = transforms
self.train = train
def __getitem__(self, idx):
row = self.df.iloc[idx]
fn = row.image
# 读取图片数据
image = cv2.imread(os.path.join('data/data97595/nongzuowu/train', fn))
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = cv2.resize(image, (256, 256), interpolation=cv2.INTER_LINEAR)
# 读取 mask 数据
# masks = cv2.imread(os.path.join(row['mask_path'], fn), cv2.IMREAD_GRAYSCALE)/255
# masks = cv2.resize(masks, (1024, 1024), interpolation=cv2.INTER_LINEAR)
# 读取 label
label = paddle.zeros([4])
label[row.label] = 1
# ------------------------------ CutMix ------------------------------------------
prob = 20 # 将 prob 设置为 0 即可关闭 CutMix
if random.randint(0, 99) < prob and self.train:
rand_index = random.randint(0, len(self.df) - 1)
rand_row = self.df.iloc[rand_index]
rand_fn = rand_row.image
rand_image = cv2.imread(os.path.join('data/data97595/nongzuowu/train', rand_fn))
rand_image = cv2.cvtColor(rand_image, cv2.COLOR_BGR2RGB)
rand_image = cv2.resize(rand_image, (256, 256), interpolation=cv2.INTER_LINEAR)
# rand_masks = cv2.imread(os.path.join(rand_row['mask_path'], rand_fn), cv2.IMREAD_GRAYSCALE)/255
# rand_masks = cv2.resize(rand_masks, (1024, 1024), interpolation=cv2.INTER_LINEAR)
lam = np.random.beta(1,1)
bbx1, bby1, bbx2, bby2 = rand_bbox(image.shape, lam)
image[bbx1:bbx2, bby1:bby2, :] = rand_image[bbx1:bbx2, bby1:bby2, :]
# masks[bbx1:bbx2, bby1:bby2] = rand_masks[bbx1:bbx2, bby1:bby2]
lam = 1 - ((bbx2 - bbx1) * (bby2 - bby1) / (image.shape[1] * image.shape[0]))
rand_label = paddle.zeros([4])
rand_label[rand_row.label] = 1
label = label * lam + rand_label * (1. - lam)
# --------------------------------- CutMix ---------------------------------------
# 应用之前我们定义的各种数据增广
# augmented = self.transforms(image=image, mask=masks)
# img, mask = augmented['image'], augmented['mask']
img = image
return self.transfoms(img), label
def __len__(self):
return len(self.df)
train_dataset = JSHDataset(train_df, data_transforms, train=True)
val_dataset = JSHDataset(val_df, data_transforms)
#train_loader
train_loader = paddle.io.DataLoader(train_dataset, places=paddle.CPUPlace(), batch_size=8, shuffle=True, num_workers=0)
#val_loader
val_loader = paddle.io.DataLoader(val_dataset, places=paddle.CPUPlace(), batch_size=8, shuffle=True, num_workers=0)
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = data[1]
print(x_data.dtype)
print(y_data)
break
paddle.float32
Tensor(shape=[8, 4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
[[0. , 0. , 1. , 0. ],
[0.54284668, 0.45715332, 0. , 0. ],
[0. , 1. , 0. , 0. ],
[0. , 0. , 1. , 0. ],
[0.32958984, 0. , 0.67041016, 0. ],
[0. , 0. , 0. , 1. ],
[0. , 0. , 0. , 1. ],
[0. , 0. , 0. , 1. ]])
from paddle.vision.models import resnet18
model = resnet18(num_classes=4)
# 模型封装
model = paddle.Model(model)
# 定义优化器
optim = paddle.optimizer.Adam(learning_rate=3e-4, parameters=model.parameters())
# 配置模型
model.prepare(
optim,
paddle.nn.CrossEntropyLoss(soft_label=True),
Accuracy()
)
# 模型训练与评估
model.fit(train_loader,
val_loader,
log_freq=1,
epochs=2,
verbose=1,
)
The loss value printed in the log is the current step, and the metric is the average value of previous steps.
Epoch 1/2
step 56/56 [==============================] - loss: 1.2033 - acc: 0.5843 - 96ms/step
Eval begin...
step 14/14 [==============================] - loss: 1.6905 - acc: 0.5625 - 73ms/step
Eval samples: 112
Epoch 2/2
step 56/56 [==============================] - loss: 0.5297 - acc: 0.7708 - 82ms/step
Eval begin...
step 14/14 [==============================] - loss: 0.5764 - acc: 0.7857 - 67ms/step
Eval samples: 112

总结

在CutMix中,用另一幅图像的一部分以及第二幅图像的ground truth标记替换该切块。在图像生成过程中设置每个图像的比例(例如0.4/0.6)。在下面的图片中,你可以看到CutMix的作者是如何演示这种技术比简单的MixUp和Cutout效果更好。

ps:神经网络热力图生成可以参考我另一个项目。

这两种数据增强方式能够很好地代表了目前数据增强的一些方法,比如cutout、mosaic等方法,掌握了这两种方法,大家也就理解了另外的cutout以及mosaic增强方法。

点击关注,第一时间了解华为云新鲜技术~

CutMix&Mixup详解与代码实战的更多相关文章

  1. net core 中间件详解及项目实战

    net core 中间件详解及项目实战 前言 在上篇文章主要介绍了DotNetCore项目状况,本篇文章是我们在开发自己的项目中实际使用的,比较贴合实际应用,算是对中间件的一个深入使用了,不是简单的H ...

  2. Git详解之一 Git实战

    Git详解之一 Git实战 入门 本章介绍开始使用 Git 前的相关知识.我们会先了解一些版本控制工具的历史背景,然后试着让 Git 在你的系统上跑起来,直到最后配置好,可以正常开始开发工作.读完本章 ...

  3. Spark详解(05-1) - SparkCore实战案例

    Spark详解(05-1) - SparkCore实战案例 数据准备 1)数据格式 本项目的数据是采集电商网站的用户行为数据,主要包含用户的4种行为:搜索.点击.下单和支付. (1)数据采用_分割字段 ...

  4. 3.awk数组详解及企业实战案例

    awk数组详解及企业实战案例 3.打印数组: [root@nfs-server test]# awk 'BEGIN{array[1]="zhurui";array[2]=" ...

  5. Python - 元组(tuple) 详解 及 代码

    元组(tuple) 详解 及 代码 本文地址: http://blog.csdn.net/caroline_wendy/article/details/17290967 元组是存放任意元素集合,不能修 ...

  6. Python - 字典(dict) 详解 及 代码

    字典(dict) 详解 及 代码 本文地址: http://blog.csdn.net/caroline_wendy/article/details/17291329 字典(dict)是表示映射的数据 ...

  7. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  8. C#的String.Split 分割字符串用法详解的代码

    代码期间,把代码过程经常用的内容做个珍藏,下边代码是关于C#的String.Split 分割字符串用法详解的代码,应该对码农们有些用途. 1) public string[] Split(params ...

  9. (转)awk数组详解及企业实战案例

    awk数组详解及企业实战案例 原文:http://www.cnblogs.com/hackerer/p/5365967.html#_label03.打印数组:1. [root@nfs-server t ...

  10. laravel 框架配置404等异常页面的方法详解(代码示例)

    本篇文章给大家带来的内容是关于laravel 框架配置404等异常页面的方法详解(代码示例),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助. 在Laravel中所有的异常都由Handl ...

随机推荐

  1. Chiplet解决芯片技术发展瓶颈

    这是IC男奋斗史的第38篇原创 本文1776字,预计阅读4分钟. Chiplet封装是什么 介绍Chiplet前,先说下SOC.Chiplet和SOC是两个相互对立的概念,刚好可以用来互为参照. SO ...

  2. Python:利用math和random模块实现RSA加密算法

    实验五报告: 利用math和random模块实现RSA加密算法 实验目标 本实验的主要目标是熟悉RSA(Rivest-Shamir-Adleman)密码算法的编写,其中包括求最大公因子.模逆的扩展欧几 ...

  3. 【XXE实战】——浅看两道CTF题

    [XXE实战]--浅看两道CTF题 上一条帖子[XXE漏洞]原理及实践演示对XXE的一些原理进行了浅析,于是写了两道CTF题巩固一下,顺便也记录一下第一次写出来CTF.两道题都是在BUU上找的:[NC ...

  4. 命令vue inspect > output.js报错:在此系统上禁止运行脚本

    用的这个命令去看output.js文件,结果报错. 解决方案是去对应目录下删掉vue.ps1就OK了 .

  5. Newbie_calculations

    拿到这道题是个应用程序,经过上次的经验就跟程序交互了一下,结果根本交互不了,输入什么东西都没有反应 然后打开ida分析发现有几个函数还有一堆的操作数,看到这一堆东西就没心思分析了,后面才知道原来就是要 ...

  6. C#操作Microsoft.Office.Interop.Word类库完整例子

    使用Microsoft.Office.Interop.Word类库操作wor文档 一.准备工作 首先在工厂中,引用[Microsoft.Office.Interop.Word],本地安装了world, ...

  7. 每天5分钟复习OpenStack(十一)Ceph部署

    在之前的章节中,我们介绍了Ceph集群的组件,一个最小的Ceph集群包括Mon.Mgr和Osd三个部分.为了更好地理解Ceph,我建议在进行部署时采取手动方式,这样方便我们深入了解Ceph的底层.今天 ...

  8. day01预习-基本语法

    typora-copy-images-to: media 基本语法 JavaScript的历史: ​ 在95年以前,就有很多上网的用户了,当时的带宽只有28.8kb/s,用户要进行表单的验证时,点击提 ...

  9. JSX 代码是如何“摇身一变”成为 DOM 的?

    JSX 是一种语法,并不是 React 中的内容,时下接入 JSX 语法的框架越来越多,但与之缘分最深的仍然是 React.本节来讲一下 React 是如何摇身一变成为 DOM 的. 我们平时在写Re ...

  10. Windows 项目的 CMakeLists 编写

    前言: 项目一直是以 .sln 解决方案打开和处理的,上传到 github 也是需要将 sln 文件包括到项目里,不太优雅(虽然方便),毕竟现在开源项目基本都是使用 CMake 做跨平台编译 因为项目 ...