P9212 题解
显然,我们维护的答案具有 可差分 性,所以转换为 \([1,r]\) 上的查询。
首先,对于 \(x,y,a_i\) 先对 \(m\) 取模不影响结果。
下面为了方便令 \(v = a_i\)。
如果 \(x>y\)。
则一定是 \(x+v-m<y+v\)。
有 \(m \leq x+v\) 且 \(y+v < m\)。
转化为 \(m-x \leq v\) 且 \(x<m-y\)。
得到 \(v \in[m-x,m-y-1]\)。
如果 \(x<y\)。
答案为所有情况减去 \(x>y\) 的情况。
然后维护 \([1,r]\) 上的答案可以离线扫描一遍。
至此问题转化成维护一个集合,支持插入一个数以及查询 \(\bmod m\) 意义下 \(\in[m-x,m-y-1]\) 的数的数量。
考虑根号分治。
那么对于 \(m \leq \sqrt n\),我们记录所有 \(\bmod M = k\)(\(M \leq \sqrt n\)) 的数的出现次数,询问就直接回答。插入 \(O(\sqrt n)\),查询 \(O(\sqrt n)\)。
\(m > \sqrt n\) 的情况下满足条件的数构成桶上不多于 \(\sqrt n\) 个区间,用 \(O(1)\) 查询 \(O(\sqrt n)\) 修改的值域分块即可。插入 \(O(\sqrt n)\),查询 \(O(\sqrt n)\)。
那么就 \(O( (n+q) \sqrt n)\) 的做完了。
参考代码:
#include<bits/stdc++.h>
using namespace std;
const int maxn = 5e5+114;
struct Node{
int x,y,M,id,f;//anser[id]+=f*v f = 1 or -1
};
const int top = 100000;
const int B = 556;
vector<Node> A[maxn];//储存离线询问
int a[maxn];
int anser[maxn];//输出答案
struct block{
int pre[1000];
}cnt[1000];
int cnt_pre[1001];
int ans[1001][1001];
int n,q;
inline void change(int x,int val){
int sum = x/B;
x%=B;
if(x==0) sum--,x+=B;
for(int i=x;i<=B;i++) {
cnt[sum].pre[i]+=val;
}
for(int i=sum;i<=B;i++) cnt_pre[i]+=val;
}
inline int query(int l,int r){
if(l>r) return 0;
int lc=l/B;
l%=B;
int rc=r/B;
r%=B;
if(l==0) lc--,l+=B;
if(r==0) rc--,r+=B;
if(lc==rc) return cnt[lc].pre[r]-cnt[rc].pre[l-1];
int res=0;
res+=cnt[lc].pre[B]-cnt[lc].pre[l-1];
res+=cnt[rc].pre[r];
res+=cnt_pre[rc-1]-cnt_pre[lc];
return res;
}
void set_add(int x){//向集合中插入 x
change(x,1);
for(int j=1;j<B;j++){
ans[j][x%j]++;
}
}
inline int set_pre(int m,int k){//mod m 意义下小于等于 k 的数的数量
if(k<0) return 0;
if(m<B)
{
int sum=0;
for(int j=0;j<=k;j++){
sum+=ans[m][j];
}
return sum;
}
else{
int l=m,r=m+k,res=query(1,k);
while(r<top){
res+=query(l,r);
l+=m;
r+=m;
}
if(l<=top)
res+=query(l,top);
return res;
}
}
inline int set_query(int m,int l,int r){//mod m \in [l,r]
if(l>r||l<0||r<0) return 0;
return set_pre(m,r)-set_pre(m,l-1);
}
void scan(){
for(int i=1;i<=n;i++){
set_add(a[i]);
for(int j=0;j<A[i].size();j++){
Node now = A[i][j];
//处理询问 now
if(now.x%now.M==now.y%now.M){
anser[now.id]+=now.f*0;
}
else if(now.x%now.M>now.y%now.M){
int l=now.M-now.x%now.M,r=now.M-now.y%now.M-1;
anser[now.id]+=now.f*set_query(now.M,l,r);
}
else{
int l=now.M-now.y%now.M,r=now.M-now.x%now.M-1;
anser[now.id]+=now.f*(i-set_query(now.M,l,r));
}
}
}
}
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n>>q;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=q;i++){
int l,r,x,y,m;
cin>>l>>r>>x>>y>>m;
Node R,L;
R.f=1;
R.id=i;
R.M=m;
R.x=x;
R.y=y;
A[r].push_back(R);
L.f=-1;
L.id=i;
L.M=m;
L.x=x;
L.y=y;
A[l-1].push_back(L);
}//询问离线
scan();
for(int i=1;i<=q;i++) cout<<anser[i]<<'\n';
}
P9212 题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
- JSOI2016R3 瞎BB题解
题意请看absi大爷的blog http://absi2011.is-programmer.com/posts/200920.html http://absi2011.is-programmer.co ...
随机推荐
- NASM中的内存引用
NASM对于内存的引用规则非常简单,如果想访问内存中的内容,就将地址用[]包围,如果没有[],就表示是地址本身,而不是内容. mov ax,[wordvar] mov ax,[wordvar+1] m ...
- postgresql 创建索引
--查询索引 select * from pg_indexes where tablename='tab1'; --创建索引(查询用到哪几列,就对哪几个字段创建索引) CREATE INDEX ind ...
- java 读取气象专业格式NetCDF文件
一.NetCDF简介NetCDF全称为network Common Data Format( "网络通用数据格式"),是一个软件库与机器无关的数据格式,支持创建,访问基于数组的科研 ...
- 数据库中存储bool对象的数据,使用Bit和Integer有什么区别,性能上有多大的差异
在数据库中存储布尔(Boolean)值时,常见的两种选择是使用 BIT 类型或 INTEGER 类型.两者在存储.性能和使用上的区别如下: 1. BIT 类型 存储:BIT 类型专门用于存储布尔值.通 ...
- unity 新input system 鼠标点在ui上检测的两种方法
哪种有用就用哪种.EventSystem.current.IsPointerOverGameObject()有可能不好使. using System.Collections.Generic; usin ...
- Dubbo SPI扩展机制源码详解(基于2.7.10)
Dubbo SPI 一. 概述 本文主要分享 Dubbo 的拓展机制 SPI. 想要理解 Dubbo ,理解 Dubbo SPI 是非常必须的.在 Dubbo 中,提供了大量的拓展点,基于 Dubbo ...
- redis 使用lua脚本 一次性获取多个hash key 字段值
客户端命令行代码: eval "local rst={};local field='schoolid'; for i,v in pairs(KEYS) do rst[i]=redis.cal ...
- 利用docker 搭建File Browser 文件管理系统
File Browser就是一个文件浏览器,因为linux并不方便桌面管理,所以Filebrowser就是帮助我们管理linux服务器上文件的程序,你可以称他为网盘程序,可以管理文件.可以分享文件,另 ...
- kubernetes ingress网站发布
ingress网站发布 单域名 # 1.创建nginx pod 名称: nginx-nodeport.yaml cat nginx-nodeport.yaml apiVersion: v1 kind: ...
- iOS 处理HLS视频流
一.HLS介绍 HLS是苹果主导的音视频传输协议,其主要的格式是一个索引文件(M3U8)+ ts分片的视频文件. HLS的优势是iOS系统天然支持,通过Http 80传输,规避了常规的防火墙问题. 视 ...