题目传送门

想要做这题,我们要先了解一下最大公约数

最大公因数,也称最大公约数最大公因子,指两个或多

个整数共有约数中最大的一个。a,b的最大公约数记为

(a,b),同样的,a,b,c的最大公约数记为(a,b,

c),多个整数的最大公约数也有同样的记号。求最大公

约数有多种方法,常见的有质因数分解法、短除法、辗转

相除法、更相减损法。

还有最小公倍数

两个或多个整数公有的倍数叫做它们的公倍数,其中除0

以外最小的一个公倍数就叫做这几个整数的最小公倍数

整数a,b的最小公倍数记为[a,b],同样的,a,b,c的

最小公倍数记为[a,b,c],多个整数的最小公倍数也有

同样的记号。

我才不会告诉你我是抄的百度百科呢!



下面进入正题,因为最大公约数*最小公倍数是等于原数之积的,所以有了下面的式子。

X0乘Y0=P乘Q

所以这道题我们可以用暴力做,下面是代码。

#include <bits/stdc++.h>//万能头
using namespace std;
int n,m,s;//统计PQ的个数
int main()
{
cin>>n>>m;
for(int i=n;i<=m;i++)
{
for(int j=n;j<=m;j++)
{
if(__gcd(i,j)==n&&i*j/__gcd(i,j)==m)//__gcd是求最大公约数函数
{
s++;//注意,这里不能加2,因为这里是统计PQ一共有多少组,而不是P和Q一共有多少个
}
}
}
cout<<s;//直接输出
return 0;
}

不带注释版[坏笑]

#include <bits/stdc++.F>
using namespace std;
int a,b,s;
int mian()
{
cin>>n>>m;
for(int i=n;i<=m;j++)
{
for(int j=n;;j++)
{
if(__gcd(i,j)==m&&ji*j/__gcd(i,j)==n)
{
s+;
}
}
}
cout<<s;
retrun 0;
}

但是暴力还是没有AC,错误有以下两个

  1. Noip比赛中不允许使用__gcd函数

  2. 两个for循环导致TLE

知道了错误,就赶紧改正吧,下面是AC代码

#include<iostream>
using namespace std;
int ans;
int lcm(int a,int b)//最小公倍数函数
{
if(a<b)
{
swap(a,b);
}
if(a%b==0)
{
return b;//辗转相除法
}
else
{
return lcm(b,a%b);
}
}
int gcd(int a,int b)//最大公约数函数
{
return (a*b/lcm(a,b));// 直接用前面 X0乘Y0=P乘Q的公式求出最大公约数
}
int main()
{
int a,b;
cin>>a>>b;//输入
for(int i=a;i<=b;i++)
{
int j=a*b/i; //这就是优化的地方,因为X0乘Y0=P乘Q,所以j可以不用for循环,直接用a*b/i就行了
if(lcm(i,j)==a&&gcd(i,j)==b) //如果用函数算出来i和j的最大公约数和最小公倍数与a,b相等
{
ans++;//标记加1
}
}
cout<<ans; //输出
return 0;
}

不带注释版[坏笑]

#include<iostream>
using namespace std;
int ans;
int lcm(int a,int b)
{
if(a<b)
{
swap(a,b);
}
if(a%b==0)
{
return b;
}
else
{
return lcm(b,a%b);
}
}
int gcd(int a,int b)
{
return (a*b/lcm(a,b));
}
int main()
{
int a,b;
cin>>a>>b;
while(1) cout<<"(‘_’)";
for(int i=a;i<=b;i++)
{
int j=a*b/i;
if(lcm(i,j)==a&&gcd(i,j)==b)
{
ans++;
}
}
cout<<ans;
return 0;
}

P1029 最大公约数和最小公倍数问题(普及−) 题解的更多相关文章

  1. [洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)

    [洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P, ...

  2. 洛谷——P1029 最大公约数和最小公倍数问题

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  3. 【数论】P1029 最大公约数和最小公倍数问题

    题目链接 P1029 最大公约数和最小公倍数问题 思路 如果有两个数a和b,他们的gcd(a,b)和lcm(a,b)的乘积就等于ab. 也就是: ab=gcd(a,b)*lcm(a,b) 那么,接下来 ...

  4. 洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]

    P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...

  5. P1029最大公约数和最小公倍数

    P1029最大公约数和最小公倍数 #include <iostream> #include <cmath> #include <algorithm> #define ...

  6. 洛谷P1029 最大公约数和最小公倍数问题 题解

    题目链接:https://www.luogu.com.cn/problem/P1029 题目描述 输入 \(2\) 个正整数 \(x_0,y_0(2 \le x_0 \lt 100000,2 \le ...

  7. P1029 最大公约数和最小公倍数问题(思维题)

    题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le y_0<=1000000)x0​,y0​(2≤x0​<100000,2≤y0​<=100 ...

  8. 洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&&非学习区警告

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

  9. luogu P1029 最大公约数和最小公倍数问题

    https://www.luogu.org/problem/show?pid=1029 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出 ...

  10. 洛谷P1029 最大公约数和最小公倍数问题

    题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...

随机推荐

  1. Django日志输出

    # 自定义日志输出信息 LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'standard': ...

  2. 人工智能如何应对 DevOps 监控和可观测性挑战

    自 ChatGPT 横空出世之后,AIGC 已成为不可逆转的时代浪潮.在之前的文章中,我们介绍了DevOps 领域中AI的用例,需要回顾可以点击下方链接.在本篇文章中,我将简单聊聊人工智能(AI)如何 ...

  3. 为什么 API 治理需要内部倡导

    API 治理旨在帮助人们通过 API 实现最大价值.但是,只有了解 API 是什么以及 API 的重要性,并且认识到 API 治理是在帮助他们而不是监管他们,才能实现这一目标.这就是为什么在任何 AP ...

  4. 【技术积累】Linux中的命令行【理论篇】【九】

    blkid命令 命令介绍 blkid命令是一个用于查看块设备属性的Linux命令.它可以识别和显示块设备的文件系统类型.UUID.LABEL.PARTUUID等信息. 命令说明 在Linux下可以使用 ...

  5. [ABC126F] XOR Matching

    2023-01-07 题目 题目传送门 翻译 翻译 难度&重要性(1~10):1 题目来源 AtCoder 题目算法 位运算 解题思路 因为两个相同数异或为 \(0\),所以中间放一个 \(k ...

  6. 细聊C# AsyncLocal如何在异步间进行数据流转

    前言 在异步编程中,处理异步操作之间的数据流转是一个比较常用的操作.C#异步编程提供了一个强大的工具来解决这个问题,那就是AsyncLocal.它是一个线程本地存储的机制,可以在异步操作之间传递数据. ...

  7. MySQL——后码锁(Next-Key Block)

    众所周知,Mysql的事务隔离级别分为4个,分别是READ-UNCOMMITED,READ-COMMITED,REPEATABLE-READ,SERIALIZABLE,在常规数据库概论中,前三种事务隔 ...

  8. HiAI Foundation助力端侧音视频AI能力,高性能低功耗释放云侧成本

    过去三年是端侧AI高速发展的几年,华为在2020年预言了端侧AI的发展潮流,2021年通过提供端云协同的方式使我们的HiAI Foundation应用性更进一个台阶,2022年提供视频超分端到端的解决 ...

  9. Solution -「营业」「ABC 209F」Deforestation

    Description   Link.   有 \(n\) 棵树,每棵的高度为 \(a(i)\),看到一棵树对答案的贡献为 \(a(i-1)+a(i)+a(i+1)\)(未定义范围为 \(0\)),求 ...

  10. 日常Bug排查-读从库没有原子性?

    日常Bug排查系列都是一些简单Bug排查.问题虽小,但经常遇到,了解这些问题,会让我们少走点弯路,提升效率.说不定有些问题你遇到过哦:) Bug现场 业务开发同学突然问了笔者一个问题,从库读会不会没有 ...