【UOJ#228】基础数据结构练习题 线段树
#228. 基础数据结构练习题
题目链接:http://uoj.ac/problem/228
Solution
这题由于有区间+操作,所以和花神还是不一样的。 花神那道题,我们可以考虑每个数最多开根几次就会成1,而这个必须利用开根的性质
我们维护区间最大、最小、和。区间加操作可以直接做。
区间开方操作需要特殊考虑。
首先对于一个区间,如果这个区间的所有数取$x=\left \lfloor \sqrt{x} \right \rfloor$值一样,那么就可以直接区间覆盖。
分析上述过程,一个区间可以直接覆盖,当这个区间的差值满足一个特定的范围。 而每次开方这个差值就会减少,可以证明这样开方$lg^{2}$次就会全部为1
所以剩下的我们就可递归下去。
这样的话,区间+操作,就相当于重置了这个差值,所以复杂度还是科学的。
但是有一种情况出现问题。
上述是每次开方后,差值减小,但是有开方后差值不变的情况。 例如 3 4 3 4 3 4 3 4
即$a$,$b$当$b$为完全平方数,$a=b-1$时。这样开方完差值还是1,然后区间+2就又变回来了。 这样上述就卡成了暴力。
那么我们把这种情况特殊考虑。 这样可以转化为一个区间-的操作。剩下的暴力递归,这样就可以了。
时间复杂度是$O(NlogNlg^2{N})$
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
#define LL long long
inline int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define MAXN 100010
int N,M,a[MAXN];
namespace SegmentTree
{
struct SegmentTreeNode{int l,r,cov; LL tag,sum,maxx,minx;}tree[MAXN<<];
#define ls now<<1
#define rs now<<1|1
inline void Update(int now)
{
tree[now].sum=tree[ls].sum+tree[rs].sum;
tree[now].maxx=max(tree[ls].maxx,tree[rs].maxx);
tree[now].minx=min(tree[ls].minx,tree[rs].minx);
}
inline void cover(int now,int D)
{
tree[now].cov=D; tree[now].tag=;
tree[now].minx=tree[now].maxx=D;
tree[now].sum=D*(tree[now].r-tree[now].l+);
}
inline void modify(int now,LL D)
{
tree[now].tag+=D;
tree[now].minx+=D; tree[now].maxx+=D; tree[now].sum+=(tree[now].r-tree[now].l+)*D;
}
inline void PushDown(int now)
{
if (tree[now].l==tree[now].r) return;
if (tree[now].cov!=-)
cover(ls,tree[now].cov),cover(rs,tree[now].cov),tree[now].cov=-;
if (tree[now].tag!=)
modify(ls,tree[now].tag),modify(rs,tree[now].tag),tree[now].tag=;
}
inline void BuildTree(int now,int l,int r)
{
tree[now].l=l; tree[now].r=r; tree[now].cov=-;
if (l==r) {tree[now].sum=tree[now].maxx=tree[now].minx=a[l]; return;}
int mid=(l+r)>>;
BuildTree(ls,l,mid); BuildTree(rs,mid+,r);
Update(now);
}
inline void Modify(int now,int L,int R,int D)
{
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r) {modify(now,D); return;}
int mid=(l+r)>>;
if (L<=mid) Modify(ls,L,R,D);
if (R>mid) Modify(rs,L,R,D);
Update(now);
}
inline void Change(int now,int L,int R)
{
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r)
{
if ((int)sqrt(tree[now].maxx)==(int)sqrt(tree[now].minx))
{cover(now,(int)sqrt(tree[now].maxx)); return;}
if (tree[now].maxx==tree[now].minx+)
{modify(now,(int)sqrt(tree[now].minx)-tree[now].minx); return;}
if (l!=r) Change(ls,L,R),Change(rs,L,R);
Update(now);
return;
}
int mid=(l+r)>>;
if (L<=mid) Change(ls,L,R);
if (R>mid) Change(rs,L,R);
Update(now);
}
inline LL Query(int now,int L,int R)
{
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r) return tree[now].sum;
int mid=(l+r)>>; LL re=;
if (L<=mid) re+=Query(ls,L,R);
if (R>mid) re+=Query(rs,L,R);
return re;
}
}
int main()
{
N=read(),M=read();
for (int i=; i<=N; i++) a[i]=read();
SegmentTree::BuildTree(,,N);
while (M--)
{
int opt=read(),l=read(),r=read(),D;
switch (opt)
{
case : D=read(),SegmentTree::Modify(,l,r,D); break;
case : SegmentTree::Change(,l,r); break;
case : printf("%lld\n",SegmentTree::Query(,l,r)); break;
}
// for (int i=1; i<=N; i++) printf("%d ",SegmentTree::Query(1,i,i)); puts("=================");
}
return ;
}
【UOJ#228】基础数据结构练习题 线段树的更多相关文章
- uoj #228. 基础数据结构练习题 线段树
#228. 基础数据结构练习题 统计 描述 提交 自定义测试 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的 ...
- uoj#228. 基础数据结构练习题(线段树区间开方)
题目链接:http://uoj.ac/problem/228 代码:(先开个坑在这个地方) #include<bits/stdc++.h> using namespace std; ; l ...
- UOJ #228. 基础数据结构练习题 线段树 + 均摊分析 + 神题
题目链接 一个数被开方 #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",st ...
- 【线段树】uoj#228. 基础数据结构练习题
get到了标记永久化 sylvia 是一个热爱学习的女孩子,今天她想要学习数据结构技巧. 在看了一些博客学了一些姿势后,她想要找一些数据结构题来练练手.于是她的好朋友九条可怜酱给她出了一道题. 给出一 ...
- uoj#228 基础数据结构练习题
题面:http://uoj.ac/problem/228 正解:线段树. 我们可以发现,开根号时一个区间中的数总是趋近相等.判断一个区间的数是否相等,只要判断最大值和最小值是否相等就行了.如果这个区间 ...
- 【uoj#228】基础数据结构练习题 线段树+均摊分析
题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...
- uoj#228. 基础数据结构练习题(线段树)
传送门 只有区间加区间开方我都会--然而加在一起我就gg了-- 然后这题的做法就是对于区间加直接打标记,对于区间开方,如果这个区间的最大值等于最小值就直接区间覆盖(据ljh_2000大佬说这个区间覆盖 ...
- UOJ #228 - 基础数据结构练习题(势能线段树+复杂度分析)
题面传送门 神仙题. 乍一看和经典题 花神游历各国有一点像,只不过多了一个区间加操作.不过多了这个区间加操作就无法再像花神游历各国那样暴力开根直到最小值为 \(1\) 为止的做法了,稍微感性理解一下即 ...
- [UOJ228] 基础数据结构练习题 - 线段树
考虑到一个数开根号 \(loglog\) 次后就会变成1,设某个Node的势能为 \(loglog(maxv-minv)\) ,那么一次根号操作会使得势能下降 \(1\) ,一次加操作最多增加 \(l ...
随机推荐
- 5、软件架构师要阅读的书籍 - IT软件人员书籍系列文章
软件架构师在项目中的地位是不言而喻的,其对于项目的需求要相对比较了解,然后对项目代码的结构需要做到覆盖全面.本文就说说作为一个软件架构师需要阅读的一些书籍. 当然,这些书籍都来源于网络,是笔者收集整理 ...
- TortoiseSVN和VisualSVN-Server的配置使用,外网访问SVN版本库
TortoiseSVN和VisualSVN-Server的配置使用,外网访问SVN版本库 SVN客户端程序:TortoiseSVN SVN服务器程序:VisualSVN-Server ######## ...
- hive 内部表和外部表的区别和理解
1. 内部表 create table test (name string , age string) location '/input/table_data'; 注:hive默认创建的是内部表 此时 ...
- Oracle索引梳理系列(六)- Oracle索引种类之函数索引
版权声明:本文发布于http://www.cnblogs.com/yumiko/,版权由Yumiko_sunny所有,欢迎转载.转载时,请在文章明显位置注明原文链接.若在未经作者同意的情况下,将本文内 ...
- 关于Redis数据过期策略
1.Redis中key的的过期时间 通过EXPIRE key seconds命令来设置数据的过期时间.返回1表明设置成功,返回0表明key不存在或者不能成功设置过期时间.在key上设置了过期时间后ke ...
- 关于linx中man命令内容中第一行数字的含义
我们知道linux中man这玩意特别厉害,我们要查么个命令的使用方法.如man ls 出现如下内容 关于这写数字的含义如下表格
- eclipse svn账号更换
在eclipse下用 svn的时候,我们习惯将用户名和密码保存.前天公司将svn的账号全部更换了,这时原来的eclipse保存的svn账号密码就失效了.那怎么样才能切换账号了,eclipse svn插 ...
- 使用scvmm 2012的动态优化管理群集资源
动态优化(Dynamic Optimization)是在scvmm2012之后引入的一个新特性,简单来说,这个特性的功能就如字面意义一样,在群集范围内使用动态迁移VM的方式优化主机的资源,使主机与VM ...
- Java连接SQLServer2008终极解决办法(亲身上机演练版)
今天我一学妹问我,Java连接SQLServer2008数据库的问题,一直无法连接成功.想起自己刚开始学习的时候,在网上找各种文章,然后实际上机验证操作,花了一两天时间才搞定,一把辛酸泪呀!记得当时是 ...
- leetcode -- Convert Sorted List to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...