Mod i

题目大意

给定一个序列 \(a\),问将其划分成若干段,满足第 \(i\) 段的和是 \(i\) 的倍数的划分方案的个数。

思路分析

考虑 DP,设 \(f_{i,j}\) 表示将序列中前 \(i\) 个数划分成 \(j\) 段,且满足条件的划分方案的个数,容易得出状态转移方程:

\[f_{i,j}=\sum f_{k,j-1}(\sum_{h=k+1}^i a_i\bmod j=0)
\]

直接转移的复杂度是 \(O(n^3)\) 的,无法接受,考虑优化。

设 \(s_i\) 为 \(a\) 的前 \(i\) 项和,那么约束条件等价于 \((s_i-s_k) \bmod j=0\),当条件成立时有 \(s_i\equiv s_k \pmod j\)。

可以设 \(g_{i,j}=\sum f_{k,i}(s_k\bmod (i+1)=j)\),那么容易发现

\[g_{j-1,s_i\bmod j}=\sum f_{k,j-1}(s_k\bmod j=s_i\bmod j)= f_{i,j}
\]

这样转移就优化到了 \(O(n^2)\),这是因为 \(g\) 可以在转移时累加,即

\[g_{j,s_i\bmod (j+1)}=\sum f_{k,j}(s_k\bmod (j+1)=s_i\bmod(j+1))
\]

其中包含 \(f_{i,j}\)。

代码

#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
const int N=3200,mod=1000000007;
#define int long long int f[N][N],g[N][N];
int sum[N],a[N];
int ans,n; signed main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
sum[i]=sum[i-1]+a[i];
}
f[0][0]=g[0][0]=1;//初始条件
for(int i=1;i<=n;i++)
for(int j=n;j>=1;j--){
f[i][j]=g[j-1][sum[i]%j];
g[j][sum[i]%(j+1)]=(g[j][sum[i]%(j+1)]+f[i][j])%mod;
}
for(int i=1;i<=n;i++) ans=(ans+f[n][i])%mod;//累加答案
cout<<ans<<'\n';
return 0;
}

[ABC207E] Mod i 题解的更多相关文章

  1. 51NOD 1038:X^A Mod P——题解

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1038 X^A mod P = B,其中P为质数.给出P和A B,求< ...

  2. [CF-GYM]Abu Tahun Mod problem题解

    前言 这道题比较简单,但我还是想了好一会 题意简述 Abu Tahun很喜欢回文. 一个数组若是回文的,那么它从前往后读和从后往前读都是一样的,比如数组\(\left\{1\right\},\left ...

  3. Codeforces Round #383 (Div. 2) 题解【ABCDE】

    Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...

  4. FZU 1759 欧拉函数 降幂公式

    Description   Given A,B,C, You should quickly calculate the result of A^B mod C. (1<=A,C<=1000 ...

  5. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  6. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  7. HDU 5478 Can you find it 随机化 数学

    Can you find it Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pi ...

  8. hdu2243之AC自动机+矩阵乘法

    考研路茫茫——单词情结 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  9. POJ-2417-Discrete Logging(BSGS)

    Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an integer N, 1 <= N &l ...

  10. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

随机推荐

  1. Python潮流周刊#9:如何在本地部署开源大语言模型?

    你好,我是猫哥.这里每周分享优质的 Python 及通用技术内容,部分为英文,已在小标题注明.(标题取自其中一则分享,不代表全部内容都是该主题,特此声明.) 首发于我的博客:https://pytho ...

  2. PostgreSQL 性能优化: 执行计划

    查询计划 扫描结点 顺序扫描 索引扫描 只用索引的扫描 位图堆扫描 位图索引扫描 公共表表达式的扫描 自定义扫描 外表扫描 函数结果扫描 子查询扫描 表样本扫描 行地址扫描 行集合扫描 工作表扫描 连 ...

  3. Mysql基础篇(三)之多表查询

    一. 多表关系 一对多(多对一) 多对一 一对一 1. 一对多 (1). 案例:部门与员工的关系 (2). 关系:一个部门对应多个员工,一个员工对应一个部门 (3). 实现:在多的一方建立外建,指向一 ...

  4. 精讲Mybatis··#{}和${}

    题目 笔记Notes 面试题目:#{}和${}的区别是什么? 网上的答案是:#{}是预编译处理,${}是字符串替换.mybatis在处理#{}时, 会将sql中的#{}替换为?号,调用Prepared ...

  5. 当使用POI打开Excel文件遇到out of memory时该如何处理?

    摘要:本文由葡萄城技术团队于博客园原创并首发.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 当我们开发处理Excel文件时,Apache POI 是许多人 ...

  6. gitlab配置环境及pycharm配置

    一.gitlab介绍 GitLab 是一个用于仓库管理系统的开源项目,使用Git作为代码管理工具,并在此基础上搭建起来的web服务 git.gitlab.GitHub的简单区别 git 是一种基于命令 ...

  7. 前端学习 C 语言 —— GDB调试器

    GDB调试器 我们在讲指针时用 GDB 调试段错误. 本篇将详细介绍 gdb 的最常用命令.日志记录.检测点,最后介绍如何用 gdb 调试进程以及用gdb 调试一个开源项目的调试版本 -- glmar ...

  8. 论文日记二:VGG

    1. 导读 前面我们回顾了AlexNet,AlexNet的作者指出模型的深度很重要,而VGG最大的贡献就在于对网络模型深度的研究. VGG原论文:<Very Deep Convolutional ...

  9. 一分钟学一个 Linux 命令 - rm

    前言 大家好,我是 god23bin,欢迎回到咱们的<一分钟学一个 Linux 命令>系列,今天我要讲的是一个比较危险的命令,rm 命令,没错,你可以没听过 rm 命令,但是删库跑路你不可 ...

  10. MariaDB start 报错:mysql-bin.index' not found (Errcode: 2) (Errcode: 13)

    问题是修改配置log-bin=/data/mysql/binlog/mysql-bin后出现的. 报错:Errcode: 2 mkdir -p /data/mysql/binlog ## 和正常的DB ...