IoU (Intersection over Union),交并比,是衡量物体检测模型在特定数据集上检测效果好坏的一个常用的标准,通常情况下,想要通过IoU来衡量物体检测模型好坏需要具备以下几点:

1.  在物体检测任务重,是指数据集通过人工手动(偶尔也有机器)标注出的物体轮廓框的标注信息(ground truth,常常会标注出物体轮廓框的大小以及轮廓框的类别等基本信息),如图所示。

2.  通过模型预测出的轮廓框信息。

下图给出如何计算IoU的计算示例,计算IoU的matlab代码给出示例以供参考。图中,绿色框是ground truth,红色框是模型预测的结果。

上图中,如果绿色框面积是ground truth,红色框是预测的坐标位置,那么计算两者的IoU之后,可以看到,IoU越大,预测的结果和实际的ground truth重叠面积越大,在物体检测中,希望模型最后预测的结果在类别和位置上均能够和ground truth完全重叠。

NMS (non-maximum suppression), 非极大抑制,在物体检测任务中,通过分类器得分score过滤最后可能会剩余几千或者几百个候选窗口满足得分,但是窗口和窗口之间往往重叠性非常大,此时利用NMS对窗口进行过滤。具体过程如下,每一个候选窗口region的某一类得分为score,首先将该类的候选窗口按照得分scores从高到低进行排序,而后将score最大的region的保留到输出清单,剩余的region通过其坐标计算和最大score的region的IoU,将IoU大于某个阈值的regions扔掉不做输出,将和最高得分的region的IoU比阈值小且得分最高的region保留到输出清单,成为第二高score的region,将该region作为比较对象,再循环按照上述方式进行逐一计算IoU和候选窗口筛选。如此以来,会将重叠性特别高的候选窗口筛选掉一部分,从而保留有效且具有区别性的候选窗口作为输出。NMS过程是针对同一类的regions进行筛选的,因此如果物体检测器有C类,那么需要C次如此的操作。NMS和计算IoU的代码可以参考如下代码,代码来自faster rcnn的官方代码包[faster rcnn]。如图所示,是基于py-faster-rcnn的demo运行的检测结果,其中选用的模型是官方公开下载的ZF模型,测试数据是开源程序中demo自带的,分别选择几类检测结果,分析了nms前后的效果,图中,左图是选择的该类预测score得分大于0.8的所有结果,右图是对左图经过nms (iou>0.3)筛选后的结果。从图中可以看到,即使经过预测阈值筛选,在进行nms筛选前,依然有很多结果重叠度很高的预测结果存在,而经过nms筛选后,重叠的预测结果大大降低,nms大大提高了检测准确率(precision)和召回率(recall)。

计算IOU的代码附上

function pick = nms(boxes, overlap)

x1 = boxes(:,1);
y1 = boxes(:,2);
x2 = boxes(:,3);
y2 = boxes(:,4);
s = boxes(:,end); area = (x2-x1+1) .* (y2-y1+1);
[vals, I] = sort(s); pick = s*0;
counter = 1;
while ~isempty(I)
last = length(I);
i = I(last);
pick(counter) = i;
counter = counter + 1; xx1 = max(x1(i), x1(I(1:last-1)));
yy1 = max(y1(i), y1(I(1:last-1)));
xx2 = min(x2(i), x2(I(1:last-1)));
yy2 = min(y2(i), y2(I(1:last-1))); w = max(0.0, xx2-xx1+1);
h = max(0.0, yy2-yy1+1); inter = w.*h;
o = inter ./ (area(i) + area(I(1:last-1)) - inter); I = I(find(o<=overlap));
end pick = pick(1:(counter-1));

  

物体检测序列之一:NMS的更多相关文章

  1. 物体检测中常用的几个概念迁移学习、IOU、NMS理解

    1.迁移学习 迁移学习也即所谓的有监督预训练(Supervised pre-training),我们通常把它称之为迁移学习.比如你已经有一大堆标注好的人脸年龄分类的图片数据,训练了一个CNN,用于人脸 ...

  2. yolo回归型的物体检测

    本弱又搬了另外一个博客的讲解: 缩进YOLO全称You Only Look Once: Unified, Real-Time Object Detection,是在CVPR2016提出的一种目标检测算 ...

  3. 物体检测丨Faster R-CNN详解

    这篇文章把Faster R-CNN的原理和实现阐述得非常清楚,于是我在读的时候顺便把他翻译成了中文,如果有错误的地方请大家指出. 原文:http://www.telesens.co/2018/03/1 ...

  4. 目标检测后处理之NMS(非极大值抑制算法)

    1.定义: 非极大值抑制算法NMS广泛应用于目标检测算法,其目的是为了消除多余的候选框,找到最佳的物体检测位置. 2.原理: 使用深度学习模型检测出的目标都有多个框,如下图,针对每一个被检测目标,为了 ...

  5. OpenCV学习 物体检测 人脸识别 填充颜色

    介绍 OpenCV是开源计算机视觉和机器学习库.包含成千上万优化过的算法.项目地址:http://opencv.org/about.html.官方文档:http://docs.opencv.org/m ...

  6. opencv,关于物体检测

    关于物体检测 环境:opencv 2.4.11+vs2013 参考: http://www.cnblogs.com/tornadomeet/archive/2012/06/02/2531705.htm ...

  7. 『计算机视觉』物体检测之RefineDet系列

    Two Stage 的精度优势 二阶段的分类:二步法的第一步在分类时,正负样本是极不平衡的,导致分类器训练比较困难,这也是一步法效果不如二步法的原因之一,也是focal loss的motivation ...

  8. 后RCNN时代的物体检测及实例分割进展

    https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650736740&idx=3&sn=cdce446703e69b ...

  9. 利用opencv进行移动物体检测

    进行运动物体检测就是将动态的前景从静态的背景中分离出来.将当前画面与假设是静态背景进行比较发现有明显的变化的区域,就可以认为该区域出现移动的物体.在实际情况中由于光照阴影等因素干扰比较大,通过像素直接 ...

  10. 物体检测算法 SSD 的训练和测试

    物体检测算法 SSD 的训练和测试 GitHub:https://github.com/stoneyang/caffe_ssd Paper: https://arxiv.org/abs/1512.02 ...

随机推荐

  1. c 语言学习第五天

    break 语句 在循环体中使用 break,可以跳出循环 打印 10 以内的数. #include<stdio.h> int main(){ int i,j = 20; for(i = ...

  2. 类、事件与对象---Dad&Mom简单练习

    目的: 模拟一个家庭日常发生的场景:妈妈做好饭,说:"开饭了!",这是爸爸听到了妈妈的喊话就立马动身开始饭吃.而儿子此时正在打游戏,于是他就说:"等我打完这把游戏再吃!& ...

  3. [oeasy]python0115_西里尔字符集_Cyrillic_俄文字符编码_KOI_8859系列

    各语言字符编码 回忆上次内容 上次回顾了 非ascii的拉丁字符编码的进化过程 0-127 是 ascii 的领域   西欧.北欧语言 大多使用 拉丁字符 由iso组织 制定iso-8859-1   ...

  4. GIS前沿技术

    无论是初步接触到GIS的学生,还是对GIS已经有一定的了解的从业者,肯定都非常关心两个问题:GIS有没有发展前景,GIS有哪些应用价值? 关于这两个问题,笔者的答案是GIS作为一门融合了空间数据采集. ...

  5. Docker 基于Dockerfile创建镜像实践

    需求描述 简单说,就是创建一个服务型的镜像,即运行基于该镜像创建的容器时,基于该容器自动开启一个服务.具体来说,是创建一个部署了nginx,uwsgi,python,django项目代码的镜像,运行基 ...

  6. 关于npm ERR! 的一个解决方案

    最近在网上找了一个js写的项目,npm下载某些组件总是失败,后经学习了解到了cnpm.使用cnpm时就都可以正常下载,但是下载完成之后程序无法正常启动,所以cnpm下载也是失败的. 后面我经过自己手动 ...

  7. 神经网络之卷积篇:详解计算机视觉(Computer vision)

    详解计算机视觉 计算机视觉是一个飞速发展的一个领域,这多亏了深度学习.深度学习与计算机视觉可以帮助汽车,查明周围的行人和汽车,并帮助汽车避开它们.还使得人脸识别技术变得更加效率和精准,即将能够体验到或 ...

  8. Jmeter函数助手38-isVarDefined

    isVarDefined函数用于判断变量是否存在. 变量的名称:填入变量名称.如果变量存在返回true,如果不存在返回false 1.先一些定义变量 ${__isVarDefined(now)},no ...

  9. (HASEE)神州笔记本 还原手册 —— 笔记本系统还原

    新买了一个笔记本,神州笔记本(HASEE),随机所带的手册,为防止丢失故把内容记录下来. 开机时按:CTRL + H 进入还原界面,点击"系统还原",点击"恢复出厂备份& ...

  10. NVIDIA公司推出的GPU运行环境下的机器人仿真环境(NVIDIA Isaac Gym)—— 到底实现了什么功能,意义价值又是什么???

    相关内容: NVIDIA公司推出的GPU运行环境下的机器人仿真环境(NVIDIA Isaac Gym)的安装--强化学习的仿真训练环境 ================================ ...