1.1 Vectors

We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.

\[v=\left[
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]

Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)

  • Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
  • Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.

1.2 Linear Combinations

Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).

We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:

  • The combinations \(cu\) fill a line through origin.
  • The combinations \(cu + dv\) fill a plane throught origin
  • The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products

Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)

Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)

Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1

Perpendicular vector : \(v \cdot w = 0\)

Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)

Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)

Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)

1.4 Matrices

1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns

2、$Ax = b $ is a linear combination of the columns A

3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)

4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $

5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)

6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix

7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))

8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))

1. Vectors and Linear Combinations的更多相关文章

  1. 【读书笔记】:MIT线性代数(1):Linear Combinations

    1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...

  2. 【线性代数】1-1:线性组合(Linear Combinations)

    title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  5. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  6. PRML-Chapter3 Linear Models for Regression

    Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...

  7. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  8. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  9. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  10. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

随机推荐

  1. 【LeetCode动态规划#15】最长公共子序列II

    最长公共子序列(二) 描述 给定两个字符串str1和str2,输出两个字符串的最长公共子序列.如果最长公共子序列为空,则返回"-1".目前给出的数据,仅仅会存在一个最长的公共子序列 ...

  2. mvc-mvp-mvvm架构调研及实现--分布式课程思考题--zzb

      目录 I. 引言 2 研究背景和动机 2 问题陈述和研究目标 2 II. 相关工作 3 研究现状和相关技术 3 MVC模式的研究现状和相关技术: 3 MVP模式的研究现状和相关技术: 4 MVVM ...

  3. Dash 2.16版本新特性介绍

    本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/dash-master 大家好我是费老师,几天前Dash发布了其2.16.0版本,随后在修复了一些潜在 ...

  4. Rsync 备份服务搭建

    Rsync 备份服务搭建 目录 Rsync 备份服务搭建 一. 前言 二. rsync 和 sersync 2.1 rsync 基本语法 2.2 本地文件传输 2.3 ssh 远程文件传输 2.4 基 ...

  5. [.Net]使用Soa库+Abp搭建微服务项目框架(四):动态代理和RPC

    ​上一章我们完成了小项目的面向服务体系改造,你或许一直在思考一个问题.为什么要将业务独立成微服务? 微服务原理 以一个健康医疗系统为例, 这个系统包含了用户模块,问卷的发放与填写,图表显示,报表生成与 ...

  6. 一款开源、免费、跨平台的Redis可视化管理工具

    前言 经常有小伙伴在技术群里问:有什么好用的Redis可视化管理工具推荐的吗?, 今天大姚给大家分享一款我一直在用的开源.免费(MIT License).跨平台的Redis可视化管理工具:Anothe ...

  7. Djaong 运行报错:ValueError: Unable to configure handler 'default'

    一.前提条件 1.Django 项目接入了 log 日志模块 二.解决方案 启动项目或者项目运行中,遇到如下报错 File "C:\Python38\lib\logging\config.p ...

  8. 编码ascii码,unicode码,utf-8编码

    1. ASCII ASCII 只有127个字符,表示英文字母的大小写.数字和一些符号,但由于其他语言用ASCII 编码表示字节不够,例如:常用中文需要两个字节,且不能和ASCII冲突,中国定制了GB2 ...

  9. 说JS作用域,就不得不说说自执行函数

    一个兜兜转转,从"北深"回到三线城市的小码农,热爱生活,热爱技术,在这里和大家分享一个技术人员的点点滴滴.欢迎大家关注我的微信公众号:果冻想 前言 不得不吐槽,学个JS,这个概念也 ...

  10. C#实时监测文件夹变化

    在开发各种应用程序时,我们经常需要对文件系统中的文件或文件夹进行实时监测,以便在文件内容改变.文件被创建或删除时能够及时做出反应.在 C# 中,System.IO.FileSystemWatcher ...