1. Vectors and Linear Combinations
1.1 Vectors
We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]
Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)
- Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
- Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.
1.2 Linear Combinations
Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).
We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:
- The combinations \(cu\) fill a line through origin.
- The combinations \(cu + dv\) fill a plane throught origin
- The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products
Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)
Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)
Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1
Perpendicular vector : \(v \cdot w = 0\)
Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)
Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)
Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)
1.4 Matrices
1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns
2、$Ax = b $ is a linear combination of the columns A
3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)
4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $
5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)
6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix
7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))
8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))
1. Vectors and Linear Combinations的更多相关文章
- 【读书笔记】:MIT线性代数(1):Linear Combinations
1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...
- 【线性代数】1-1:线性组合(Linear Combinations)
title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- [MIT 18.06 线性代数]Intordution to Vectors向量初体验
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- PRML-Chapter3 Linear Models for Regression
Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- What is an eigenvector of a covariance matrix?
What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- sklearn包学习
1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...
随机推荐
- 为产品的一堆Visual Studio解决方案引入Directory.Build.props
为什么需要Directory.Build.props? 一个产品有了多个甚至几十个解决方案之后,每个解决方案里面的项目可能会引用一个dll包的不同版本,因此需要集中管理dll包的版本号. .NET的D ...
- 用容器部署Nexus 3作为Nuget和Docker的仓库
1.准备docker-compose的配置文件 version: '3' services: nexus: image: 'sonatype/nexus3:3.42.0' container_name ...
- 【Azure 应用服务】调用Azure REST API来获取 App Service的访问限制信息(Access Restrictions)以及修改
问题描述 昨天的博文中(https://www.cnblogs.com/lulight/p/17099179.html)介绍了使用Python SDK 来获取App Service的访问限制信息,那么 ...
- 从Python语言的角度看C++的指针
技术背景 从一个Python Coder的角度来说,其实很羡慕C++里面指针类型的用法,即时指针这种用法有可能会给程序带来众多的不稳定因素(据C++老Coder所说).本文主要站在一个C++初学者的角 ...
- SpringMVC快速复习(超详细)
目录 一.SpringMVC简介 1.什么是MVC 2.什么是SpringMVC 3.SpringMVC的特点 二.HelloWorld 1.开发环境 2.创建maven工程 a>添加web模块 ...
- 多个 .NET Core SDK 版本之间进行切换 global.json
由于同一台电脑可以安装多个版本的.NET Core SDK. 当安装了许多不同版本的.NET Core SDK 之后,要如何才能使用旧版dotnet 命令,执行dotnet new 或dotnet b ...
- C++学习笔记之编程思想
目录 编程思想 单例(Singleton)模式 观察者(Observer)模式 void*.NULL和nullptr C的类型转换 C++的类型转换 适配器(Adapter)模式 泛型编程的思想 模板 ...
- Centos挂在U盘的时候无法挂载
网上的教学视频大部分全是以centos为教材底子--没办法更换系统了,这样方便麻! 我参考的文章: https://blog.csdn.net/shengjie87/article/details/1 ...
- 一次对requirements环境的配置
事情是这样的,我需要跑通一个代码,因此要配置环境,但是并不能利用requirements中给的指令直接配置,于是开始找一些其他的解决方法.作为一名小白,总是绕很多弯路. 记下一些蜿蜒. 首先,摘录re ...
- 逆向通达信Level-2 续十一 (无帐号登陆itrend研究版)
<续九>无帐号打开了itrend研究版但是用不了.今次无帐号登陆itrend研究版可以使用行情. 演示三图 1. 首先成功在金融终端无帐号登陆成功. 2. 同理应用在itrend研究版,却 ...