1.1 Vectors

We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.

\[v=\left[
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]

Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)

  • Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
  • Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.

1.2 Linear Combinations

Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).

We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:

  • The combinations \(cu\) fill a line through origin.
  • The combinations \(cu + dv\) fill a plane throught origin
  • The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products

Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)

Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)

Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1

Perpendicular vector : \(v \cdot w = 0\)

Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)

Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)

Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)

1.4 Matrices

1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns

2、$Ax = b $ is a linear combination of the columns A

3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)

4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $

5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)

6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix

7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))

8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))

1. Vectors and Linear Combinations的更多相关文章

  1. 【读书笔记】:MIT线性代数(1):Linear Combinations

    1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...

  2. 【线性代数】1-1:线性组合(Linear Combinations)

    title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  5. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  6. PRML-Chapter3 Linear Models for Regression

    Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...

  7. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  8. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  9. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  10. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

随机推荐

  1. 为产品的一堆Visual Studio解决方案引入Directory.Build.props

    为什么需要Directory.Build.props? 一个产品有了多个甚至几十个解决方案之后,每个解决方案里面的项目可能会引用一个dll包的不同版本,因此需要集中管理dll包的版本号. .NET的D ...

  2. 用容器部署Nexus 3作为Nuget和Docker的仓库

    1.准备docker-compose的配置文件 version: '3' services: nexus: image: 'sonatype/nexus3:3.42.0' container_name ...

  3. 【Azure 应用服务】调用Azure REST API来获取 App Service的访问限制信息(Access Restrictions)以及修改

    问题描述 昨天的博文中(https://www.cnblogs.com/lulight/p/17099179.html)介绍了使用Python SDK 来获取App Service的访问限制信息,那么 ...

  4. 从Python语言的角度看C++的指针

    技术背景 从一个Python Coder的角度来说,其实很羡慕C++里面指针类型的用法,即时指针这种用法有可能会给程序带来众多的不稳定因素(据C++老Coder所说).本文主要站在一个C++初学者的角 ...

  5. SpringMVC快速复习(超详细)

    目录 一.SpringMVC简介 1.什么是MVC 2.什么是SpringMVC 3.SpringMVC的特点 二.HelloWorld 1.开发环境 2.创建maven工程 a>添加web模块 ...

  6. 多个 .NET Core SDK 版本之间进行切换 global.json

    由于同一台电脑可以安装多个版本的.NET Core SDK. 当安装了许多不同版本的.NET Core SDK 之后,要如何才能使用旧版dotnet 命令,执行dotnet new 或dotnet b ...

  7. C++学习笔记之编程思想

    目录 编程思想 单例(Singleton)模式 观察者(Observer)模式 void*.NULL和nullptr C的类型转换 C++的类型转换 适配器(Adapter)模式 泛型编程的思想 模板 ...

  8. Centos挂在U盘的时候无法挂载

    网上的教学视频大部分全是以centos为教材底子--没办法更换系统了,这样方便麻! 我参考的文章: https://blog.csdn.net/shengjie87/article/details/1 ...

  9. 一次对requirements环境的配置

    事情是这样的,我需要跑通一个代码,因此要配置环境,但是并不能利用requirements中给的指令直接配置,于是开始找一些其他的解决方法.作为一名小白,总是绕很多弯路. 记下一些蜿蜒. 首先,摘录re ...

  10. 逆向通达信Level-2 续十一 (无帐号登陆itrend研究版)

    <续九>无帐号打开了itrend研究版但是用不了.今次无帐号登陆itrend研究版可以使用行情. 演示三图 1. 首先成功在金融终端无帐号登陆成功. 2. 同理应用在itrend研究版,却 ...