1.1 Vectors

We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.

\[v=\left[
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]

Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)

  • Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
  • Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.

1.2 Linear Combinations

Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).

We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:

  • The combinations \(cu\) fill a line through origin.
  • The combinations \(cu + dv\) fill a plane throught origin
  • The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products

Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)

Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)

Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1

Perpendicular vector : \(v \cdot w = 0\)

Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)

Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)

Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)

1.4 Matrices

1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns

2、$Ax = b $ is a linear combination of the columns A

3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)

4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $

5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)

6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix

7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))

8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))

1. Vectors and Linear Combinations的更多相关文章

  1. 【读书笔记】:MIT线性代数(1):Linear Combinations

    1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...

  2. 【线性代数】1-1:线性组合(Linear Combinations)

    title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  5. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  6. PRML-Chapter3 Linear Models for Regression

    Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...

  7. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  8. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  9. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  10. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

随机推荐

  1. 【Java复健指南13】OOP高级04【告一段落】-四大内部类

    四大内部类 一个类的内部又完整的嵌套了另一个类结构. class Outer{ //外部类 class lnner{ //内部类 } } class Other{//外部其他类 } 被嵌套的类称为内部 ...

  2. 【Azure 媒体服务】AMS的Manifest文件中SmoothStreamingMedia片段中<c t="6161940" d="749970" r="2" n="0" />, c, t, d, r, n 的解析

    问题描述 在Azure媒体服务(AMS: Azure Media Service)中,不管是点播,直播都需要下载manifest文件.而文件中有一段[<c t="6161940&quo ...

  3. Python-Json异常:Object of type Decimal is not JSON serializable

    源起: 使用python分离出一串文本,因为是看起来像整数,结果json转换时发生异常:TypeError: Object of type Decimal is not JSON serializab ...

  4. Java 常用类 于 StringBuffer 和 StringBuilder的使用 + String三者的异同

    1 package com.bytezero.stringclass; 2 3 import org.junit.Test; 4 5 /** 6 * 关于 StringBuffer 和 StringB ...

  5. python用matplotlib或boxplot作图的时候,中文标注无法正常显示,乱码为小方框的解决办法

    第一种 import matplotlib.pyplot as plt plt.rc("font",family="SimHei",size="22& ...

  6. 从零开始搭建Springboot开发环境(Java8+Git+Maven+MySQL+Idea)之一步到位

    说明 所谓万事开头难,对于初学Java和Springboot框架的小伙伴往往会花不少时间在开发环境搭建上面.究其原因其实还是不熟悉,作为在IT界摸爬滚打数年的老司机,对于各种开发环境搭建已经了然于胸, ...

  7. Python 潮流周刊第 41 期(摘要),赠书5本

    本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程.开源项目.软件工具.播客和视频.热门话题等内容.愿景:帮助所有读者精进 Python 技术,并增长职 ...

  8. Linux 系统进程管理

    Linux 系统进程管理 目录 Linux 系统进程管理 一.进程的概述 1.1 什么是进程? 1.2 进程和程序的区别 1.3 进程的生命周期 1.4 进程的运行过程 二. 静态显示进程状态-ps ...

  9. 剑桥英英在线词典 - 可以查单词 可数-不可数 - 英语 a few/few/a little/little

    There is _____ milk in a fridge. Let's go buy some. A. a few B. few C. a little D. little 解析:经典老知识点 ...

  10. whale - awesome 关联单词

    whale - awesome 关联单词 whale 对应 awesome 里面的 awe 两个含义应该是一样的. whale wa哇-惊叹词-大型海洋生物-鲸鱼 来自古英语hwael,大型海洋生物, ...