1. Vectors and Linear Combinations
1.1 Vectors
We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]
Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)
- Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
- Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.
1.2 Linear Combinations
Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).
We can visualize \(v + w\) using arrows,for example:
The combinations can fill Line、Plane 、or 3-dimensional space:
- The combinations \(cu\) fill a line through origin.
- The combinations \(cu + dv\) fill a plane throught origin
- The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.
1.3 Lengths and Dot Products
Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)
Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)
Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1
Perpendicular vector : \(v \cdot w = 0\)
Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)
Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)
Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)
1.4 Matrices
1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns
2、$Ax = b $ is a linear combination of the columns A
3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)
4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $
5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)
6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix
7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))
8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))
1. Vectors and Linear Combinations的更多相关文章
- 【读书笔记】:MIT线性代数(1):Linear Combinations
1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...
- 【线性代数】1-1:线性组合(Linear Combinations)
title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- [MIT 18.06 线性代数]Intordution to Vectors向量初体验
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- PRML-Chapter3 Linear Models for Regression
Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- What is an eigenvector of a covariance matrix?
What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- sklearn包学习
1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...
随机推荐
- 【LeetCode动态规划#15】最长公共子序列II
最长公共子序列(二) 描述 给定两个字符串str1和str2,输出两个字符串的最长公共子序列.如果最长公共子序列为空,则返回"-1".目前给出的数据,仅仅会存在一个最长的公共子序列 ...
- mvc-mvp-mvvm架构调研及实现--分布式课程思考题--zzb
目录 I. 引言 2 研究背景和动机 2 问题陈述和研究目标 2 II. 相关工作 3 研究现状和相关技术 3 MVC模式的研究现状和相关技术: 3 MVP模式的研究现状和相关技术: 4 MVVM ...
- Dash 2.16版本新特性介绍
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/dash-master 大家好我是费老师,几天前Dash发布了其2.16.0版本,随后在修复了一些潜在 ...
- Rsync 备份服务搭建
Rsync 备份服务搭建 目录 Rsync 备份服务搭建 一. 前言 二. rsync 和 sersync 2.1 rsync 基本语法 2.2 本地文件传输 2.3 ssh 远程文件传输 2.4 基 ...
- [.Net]使用Soa库+Abp搭建微服务项目框架(四):动态代理和RPC
上一章我们完成了小项目的面向服务体系改造,你或许一直在思考一个问题.为什么要将业务独立成微服务? 微服务原理 以一个健康医疗系统为例, 这个系统包含了用户模块,问卷的发放与填写,图表显示,报表生成与 ...
- 一款开源、免费、跨平台的Redis可视化管理工具
前言 经常有小伙伴在技术群里问:有什么好用的Redis可视化管理工具推荐的吗?, 今天大姚给大家分享一款我一直在用的开源.免费(MIT License).跨平台的Redis可视化管理工具:Anothe ...
- Djaong 运行报错:ValueError: Unable to configure handler 'default'
一.前提条件 1.Django 项目接入了 log 日志模块 二.解决方案 启动项目或者项目运行中,遇到如下报错 File "C:\Python38\lib\logging\config.p ...
- 编码ascii码,unicode码,utf-8编码
1. ASCII ASCII 只有127个字符,表示英文字母的大小写.数字和一些符号,但由于其他语言用ASCII 编码表示字节不够,例如:常用中文需要两个字节,且不能和ASCII冲突,中国定制了GB2 ...
- 说JS作用域,就不得不说说自执行函数
一个兜兜转转,从"北深"回到三线城市的小码农,热爱生活,热爱技术,在这里和大家分享一个技术人员的点点滴滴.欢迎大家关注我的微信公众号:果冻想 前言 不得不吐槽,学个JS,这个概念也 ...
- C#实时监测文件夹变化
在开发各种应用程序时,我们经常需要对文件系统中的文件或文件夹进行实时监测,以便在文件内容改变.文件被创建或删除时能够及时做出反应.在 C# 中,System.IO.FileSystemWatcher ...