1. Vectors and Linear Combinations
1.1 Vectors
We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]
Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)
- Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
- Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.
1.2 Linear Combinations
Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).
We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:
- The combinations \(cu\) fill a line through origin.
- The combinations \(cu + dv\) fill a plane throught origin
- The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products
Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)
Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)
Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1
Perpendicular vector : \(v \cdot w = 0\)
Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)
Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)
Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)
1.4 Matrices
1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns
2、$Ax = b $ is a linear combination of the columns A
3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)
4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $
5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)
6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix
7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))
8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))
1. Vectors and Linear Combinations的更多相关文章
- 【读书笔记】:MIT线性代数(1):Linear Combinations
1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...
- 【线性代数】1-1:线性组合(Linear Combinations)
title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- [MIT 18.06 线性代数]Intordution to Vectors向量初体验
目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- PRML-Chapter3 Linear Models for Regression
Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
- What is an eigenvector of a covariance matrix?
What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- sklearn包学习
1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...
随机推荐
- 【Java复健指南13】OOP高级04【告一段落】-四大内部类
四大内部类 一个类的内部又完整的嵌套了另一个类结构. class Outer{ //外部类 class lnner{ //内部类 } } class Other{//外部其他类 } 被嵌套的类称为内部 ...
- 【Azure 媒体服务】AMS的Manifest文件中SmoothStreamingMedia片段中<c t="6161940" d="749970" r="2" n="0" />, c, t, d, r, n 的解析
问题描述 在Azure媒体服务(AMS: Azure Media Service)中,不管是点播,直播都需要下载manifest文件.而文件中有一段[<c t="6161940&quo ...
- Python-Json异常:Object of type Decimal is not JSON serializable
源起: 使用python分离出一串文本,因为是看起来像整数,结果json转换时发生异常:TypeError: Object of type Decimal is not JSON serializab ...
- Java 常用类 于 StringBuffer 和 StringBuilder的使用 + String三者的异同
1 package com.bytezero.stringclass; 2 3 import org.junit.Test; 4 5 /** 6 * 关于 StringBuffer 和 StringB ...
- python用matplotlib或boxplot作图的时候,中文标注无法正常显示,乱码为小方框的解决办法
第一种 import matplotlib.pyplot as plt plt.rc("font",family="SimHei",size="22& ...
- 从零开始搭建Springboot开发环境(Java8+Git+Maven+MySQL+Idea)之一步到位
说明 所谓万事开头难,对于初学Java和Springboot框架的小伙伴往往会花不少时间在开发环境搭建上面.究其原因其实还是不熟悉,作为在IT界摸爬滚打数年的老司机,对于各种开发环境搭建已经了然于胸, ...
- Python 潮流周刊第 41 期(摘要),赠书5本
本周刊由 Python猫 出品,精心筛选国内外的 250+ 信息源,为你挑选最值得分享的文章.教程.开源项目.软件工具.播客和视频.热门话题等内容.愿景:帮助所有读者精进 Python 技术,并增长职 ...
- Linux 系统进程管理
Linux 系统进程管理 目录 Linux 系统进程管理 一.进程的概述 1.1 什么是进程? 1.2 进程和程序的区别 1.3 进程的生命周期 1.4 进程的运行过程 二. 静态显示进程状态-ps ...
- 剑桥英英在线词典 - 可以查单词 可数-不可数 - 英语 a few/few/a little/little
There is _____ milk in a fridge. Let's go buy some. A. a few B. few C. a little D. little 解析:经典老知识点 ...
- whale - awesome 关联单词
whale - awesome 关联单词 whale 对应 awesome 里面的 awe 两个含义应该是一样的. whale wa哇-惊叹词-大型海洋生物-鲸鱼 来自古英语hwael,大型海洋生物, ...