1.1 Vectors

We have n separate numbers \(v_1、v_2、v_3,...,v_n\),that produces a n-dimensional vector \(v\),and \(v\) is represented by an arrow.

\[v=\left[
\begin{matrix}
v_1 \\
v_2 \\
.\\
.\\
.\\
v_n
\end{matrix}
\right] = (v_1,v_2,...,v_n)
\]

Two-dimensional vector :\(v = \left[\begin{matrix} v_1 \\ v_2 \end{matrix}\right]\) and \(w = \left[\begin{matrix} w_1 \\ w_2 \end{matrix}\right]\)

  • Vector Addition : \(v + w = \left[\begin{matrix} v_1 + w_1 \\ v_2 + w_2\end{matrix}\right]\)
  • Scalar Multiplication : \(cv = \left[\begin{matrix} cv_1 \\ cv_2 \end{matrix}\right]\),c is scalar.

1.2 Linear Combinations

Multiply \(v\) by \(c\) and multiply \(w\) by \(d\),the sum of \(cv\) and \(dw\) is a linear combination : \(cv + dw\).

We can visualize \(v + w\) using arrows,for example:

The combinations can fill Line、Plane 、or 3-dimensional space:

  • The combinations \(cu\) fill a line through origin.
  • The combinations \(cu + dv\) fill a plane throught origin
  • The combinations \(cu + dv +ew\) fill three-dimensional space throught origin.

1.3 Lengths and Dot Products

Dot Product/ Inner Product: \(v \cdot w = v_1w_1 + v_2w_2\),where $v = (v_1, v_2) $ and \(w=(w_1, w_2)\) ,the dot product \(w \cdot v\) equals \(v \cdot w\)

Length : \(||v|| = \sqrt{v \cdot v} = (v_1^2 + v_2^2 + v_3^2 +...+ v_n^2)^{1/2}\)

Unit vector : \(u = v /||v||\) is a unit vector in the same direction as \(v\),length =1

Perpendicular vector : \(v \cdot w = 0\)

Cosine Formula : if \(v\) and \(w\) are nonzero vectors then \(\frac{v \cdot w}{||v|| \ ||w||} = cos \theta\) , \(\theta\) is the angle between \(v\) and \(w\)

Schwarz Inequality : \(|v \cdot w| \leq ||v|| \ ||w||\)

Triangel Inequality : \(||v + w|| \leq ||v|| + ||w||\)

1.4 Matrices

1、\(A = \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{matrix}\right]\) is a 3 by 2 matrix : m=2 rows and n=2 columns

2、$Ax = b $ is a linear combination of the columns A

3、 Combination of the vectors : \(Ax = x_1\left[ \begin{matrix} 1 \\ -1 \\ 0 \end{matrix} \right] + x_2\left[ \begin{matrix} 0 \\ 1 \\ -1 \end{matrix} \right] + x_3\left[ \begin{matrix} 0 \\ 0 \\ 1 \end{matrix} \right] = \left[ \begin{matrix} x_1 \\ x_2-x_1 \\ x_3-x_2 \end{matrix} \right]\)

4、Matrix times Vector : $Ax = \left[ \begin{matrix} 1&0&0\ -1&1&0 \ 0&-1&1 \end{matrix} \right] \left[ \begin{matrix} x_1\ x_2 \ x_3 \end{matrix} \right]= \left[ \begin{matrix} x_1 \ x_2-x_1 \ x_3-x_2 \end{matrix} \right] $

5、Linear Equation : Ax = b --> \(\begin{matrix} x_1 = b_1 \\ -x_1 + x_2 = b_2 \\ -x_2 + x_3 = b_3 \end{matrix}\)

6、Inverse Solution : \(x = A^{-1}b\) -- > \(\begin{matrix} x_1 = b_1 \\ x_2 = b_1 + b_2 \\ x_3 =b_1 + b_2 + b_3 \end{matrix}\), when A is an invertible matrix

7、Independent columns : Ax = 0 has one solution, A is an invertible matrix, the column vectors of A are independent. (example: \(u,v,w\) are independent,No combination except \(0u + 0v + 0w = 0\) gives \(b=0\))

8、Dependent columns : Cx = 0 has many solutions, C is a singular matrix, the column vectors of C are dependent. (example: \(u,v,w^*\) are dependent,other combinations like \(au + cv + dw^*\) gives \(b=0\))

1. Vectors and Linear Combinations的更多相关文章

  1. 【读书笔记】:MIT线性代数(1):Linear Combinations

    1. Linear Combination Two linear operations of vectors: Linear combination: 2.Geometric Explaination ...

  2. 【线性代数】1-1:线性组合(Linear Combinations)

    title: [线性代数]1-1:线性组合(Linear Combinations) toc: true categories: Mathematic Linear Algebra date: 201 ...

  3. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  4. [MIT 18.06 线性代数]Intordution to Vectors向量初体验

    目录 1.1. Vectors and Linear Combinations向量和线性组合 REVIEW OF THE KEY IDEAS 1.2 Lengths and Dot Products向 ...

  5. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  6. PRML-Chapter3 Linear Models for Regression

    Example: Polynomial Curve Fitting The goal of regression is to predict the value of one or more cont ...

  7. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  8. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  9. Getting started with machine learning in Python

    Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...

  10. sklearn包学习

    1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征, ...

随机推荐

  1. 容器与 Pod

    现在 Docker 的流行程度越来越高,越来越多的公司使用 Docker 打包和部署项目.但是也有很多公司只是追求新技术,将以前的单体应用直接打包为镜像,代码.配置方式等各方面保持不变,使用 Dock ...

  2. C++ mySQL数据库连接池(windows平台)

    C++ MySQL数据库连接池 新手学了C++多线程,看了些资料练手写了C++数据库连接池小项目,自己的源码地址 关键技术点 MySQL数据库编程.单例模式.queue队列容器.C++11多线程编程. ...

  3. Java 多线程------创建多线程的方式二:实现 Runnable接口 + 比较创建线程的两种方式:

    1 package com.bytezero.threadexer; 2 3 /** 4 * 5 * 创建多线程的方式二:实现 Runnable接口 6 * 1.创建一个实现了Runnable接口类 ...

  4. Java package(包) +import 关键字(2)

    1 package com.bytezero.exer; 2 3 import java.lang.reflect.Field; 4 5 //import java.util.ArrayList; 6 ...

  5. Java 可变个数形参的方法

    1 /** 2 * 3 * @Description 4 * @author Bytezero·zhenglei! Email:420498246@qq.com 5 * @version 6 * @d ...

  6. C++函数模板总结:

    //C++提高编程 模板(泛型编程 STL)//模板不可以直接使用 它只是一个框架//模板的通用并不是万能的//语法//template<typename T>//函数模板两种方式//1. ...

  7. 继续总结Python中那些简单好用的用法

    上一篇文章Python中那些简单又好用的特性和用法发出后,群里的小伙伴又给补充了几个好用的用法,结合生产实用经验汇总整理如下,各位看官如有需要请自取 反射,反射是一种机制,可以在运行时获取.检查和修改 ...

  8. Java中关键字-instanceof-的真实应用场景-2022新项目

    instanceof关键字主要用来判断两个对象是否为同一种类型,举个例子如果有猫类.动物类,猫类继承自动物类: 判断某个类是否为动物类,就可以使用instanceof关键字.下面简单介绍几种真实的应用 ...

  9. 摆脱鼠标系列 vscode 向右拆分编辑器 ctrl + 右箭头

    摆脱鼠标系列 vscode 向右拆分编辑器 ctrl + 右箭头 为什么 今天看见一个两栏工作的,左侧放的是目录大纲,右侧是代码内容 用快捷键 ctrl + 右箭头 快速扩展一个,关闭可以ctrl + ...

  10. FastGithub.UI64位中文版V2.1.4绿色版 - 软件推荐

    推荐理由 相对于改hosts,这个更好用 FastGithub.UI64位中文版V2.1.4绿色版 https://www.cr173.com/soft/670733.html