Hession矩阵(整理)
二阶偏导数矩阵也就所谓的赫氏矩阵(Hessian matrix).
一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵.
求向量函数最小值时用的,矩阵正定是最小值存在的充分条件。
经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题尚无一般的求解方法,但判定局部极小值的方法是有的,就是用hessian矩阵,
在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值点.
在x0点上,hessian矩阵是正定的,且各分量的一阶偏导数为0,则x0为极小值点.
矩阵是负定的充要条件是各个特征值均为负数.
矩阵是正定的充要条件是各个特征值均为正数.

设n多元实函数
在点
的邻域内有二阶连续偏导,若有:

且

则:
当A正定矩阵时,
在
处是极小值
当A负定矩阵时,
在
处是极大值
当A不定矩阵时,
不是极值点
当A为半正定矩阵或半负定矩阵时,
是“可疑”极值点,尚需要利用其他方法来判定。



2), 最优化
在最优化的问题中, 线性最优化至少可以使用单纯形法(或称不动点算法)求解, 但对于非线性优化问题, 牛顿法提供了一种求解的办法. 假设任务是优化一个目标函数ff, 求函数ff的极大极小问题, 可以转化为求解函数ff的导数f′=0f′=0的问题, 这样求可以把优化问题看成方程求解问题(f′=0f′=0). 剩下的问题就和第一部分提到的牛顿法求解很相似了.
这次为了求解f′=0f′=0的根, 把f(x)f(x)的泰勒展开, 展开到2阶形式:


Hession矩阵(整理)的更多相关文章
- Hession矩阵与牛顿迭代法
1.求解方程. 并不是所有的方程都有求根公式,或者求根公式很复杂,导致求解困难.利用牛顿法,可以迭代求解. 原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f' ...
- hession矩阵的计算与在图像中的应用
参考的一篇博客,文章地址:https://blog.csdn.net/lwzkiller/article/details/55050275 Hessian Matrix,它有着广泛的应用,如在牛顿方法 ...
- 转载 Deep learning:一(基础知识_1)
前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程UFLDL Tutorial,据说这个教程写得浅显易懂,也不太长.不过在这这之前还是复习下m ...
- Deep learning:一(基础知识_1)
本文纯转载: 主要是想系统的跟tornadomeet的顺序走一遍deeplearning; 前言: 最近打算稍微系统的学习下deep learing的一些理论知识,打算采用Andrew Ng的网页教程 ...
- [UFLDL] Basic Concept
博客内容取材于:http://www.cnblogs.com/tornadomeet/archive/2012/06/24/2560261.html 参考资料: UFLDL wiki UFLDL St ...
- MATLAB读取一张RGB图片转成YUV格式
1.读入照片 控制输出的标志定义 clc;close all;clear YES = 1; NO = 0; %YES表示输出该文件,请用户配置 yuv444_out_txt = 1; yuv444_o ...
- Deep Learning 学习随记(三)Softmax regression
讲义中的第四章,讲的是Softmax 回归.softmax回归是logistic回归的泛化版,先来回顾下logistic回归. logistic回归: 训练集为{(x(1),y(1)),...,(x( ...
- 逻辑回归:使用SGD(Stochastic Gradient Descent)进行大规模机器学习
Mahout学习算法训练模型 mahout提供了许多分类算法,但许多被设计来处理非常大的数据集,因此可能会有点麻烦.另一方面,有些很容易上手,因为,虽然依然可扩展性,它们具有低开销小的数据集.这样一个 ...
- LDA(latent dirichlet allocation)
1.LDA介绍 LDA假设生成一份文档的步骤如下: 模型表示: 单词w:词典的长度为v,则单词为长度为v的,只有一个分量是1,其他分量为0的向量 $(0,0,...,0,1,0,... ...
随机推荐
- 【转】21个免费的UI界面设计工具、资源及网站
本文将介绍21个免费的UI界面设计工具.资源及网站,如果你在做用户体验设计.界面设计.产品设计.JS前段开发.手机产品设计以及iPad和平板电脑产品设计,不妨来看看. AD: 2013云计算架构师峰会 ...
- css控制div等比高度
在移动端开发中,在banner轮播图未加载出来之前,banner层是不占文档流高度的,当从服务器获取完banner数据,展示的时候,banner层因为有了内容 所以会撑开,导致banner层下面的内容 ...
- Go和Java的性能对比,真的如此吗?
前两天我看到了一篇文章,测试Java和Go和Python的性能,其测试内容是一个排序,排序一亿次,然后看那个语言耗时最短,我先贴一下这个文章的测试结果,Java竟然比Go快了一倍不止,Go不是号称接近 ...
- 唬人的Java泛型并不难
泛型 public interface Foo<E> {}public interface Bar<T> {}public interface Zar<?> {} ...
- 怎样使用七牛云CDN加速并绑定阿里云域名
昨天晚上在某个群里看到群友问,七牛云能不能绑定自己的域名作为静态资源文件的前缀,忽然想起来我已经有快两年时间没有登录过我的七牛云账号了,不禁老脸一红,这是有多久没有自己前后端都弄了,幸好还没有老年痴呆 ...
- mysql索引创建和使用细节(二)
上篇粗略记录当mysql字段类型是string,传入int类型参数后失效当问题. 现在测试下mysql字段是int类型,传参string类型会发生什么. 题外话,最近膝盖手术后还在家养伤中,只怪自己以 ...
- JMeter——分布式压测
一.Jmeter4.0分布式压测准备工作 压测注意事项 the firewalls on the systems are turned off or correct ports ...
- 系统升级更新,cocoaPods不可用的问题
1.在终端运行: $ sudo gem install cocoa pods 会出现以下错误: ERROR: While executing gem ... (Errno::EPERM) Opera ...
- A complex 16-Level XSS Challenge
A complex 16-Level XSS Challenge, held in summer 2014 (+1 Hidden Level) Index Level 0 Level 1 Level ...
- git使用中遇到的问题
1.拉取时报错:Permission denied (publickey) 先检查一下你的乌龟设置是否用的不是乌龟自己的SSH 2.TortoiseGit报错: Couldn’t load this ...