Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\]
where \(\widetilde{H_n}\) is the alternating harmonic number.
\(\Large\mathbf{Solution:}\)
Namely,
\[\widetilde{H_n} = \ln (2) + (-1)^{n-1} \int_{0}^{1} \frac{x^{n}}{1+x} \mathrm dx \]
Using that representation,
\[\begin{align*} {\sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}} &= \ln (2) \sum_{n=1}^{\infty} \frac{1}{n^{3}} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{3}} \int_{0}^{1} \frac{x^{n}}{1+x} \mathrm dx \\ &= \zeta(3) \ln(2) - \int_{0}^{1} \frac{1}{1+x} \sum_{n=1}^{\infty} \frac{(-x)^{n}}{n^{3}}\mathrm dx \\ &= \zeta(3) \ln(2) - \int_{0}^{1} \frac{\text{Li}_{3}(-x)}{1+x} \mathrm dx \\ &= \zeta(3) \ln(2) - \text{Li}_{3}(-x) \ln(1+x) \Bigg|^{1}_{0} + \int_{0}^{1} \frac{\text{Li}_{2}(-x) \ln(1+x)}{x} \mathrm dx \\ &= \zeta(3) \ln(2) + \frac{3}{4} \zeta(3) \ln(2) - \frac{1}{2} \Big( \text{Li}_{2}(-1) \Big)^{2} \\ &= \Large\boxed{\displaystyle \color{blue}{\frac{7}{4} \zeta(3) \ln(2) - \frac{\pi^{4}}{288}}} \end{align*}\]
This also can be Evaluated by using the fact that
\[\large\boxed{\displaystyle \color{DarkOrange} {\sum_{n=1}^\infty \frac{\widetilde{H_n}}{n^q} = \zeta(q)\ln(2)-\frac{q}{2}\zeta(q+1)+2\eta(z)+\sum_{k=1}^q \eta(k)\eta(q-k+1)}}\]
where \(\eta(z)\) is the Dirichlet Eta Function and \(\displaystyle \widetilde{H_n}=\sum_{j=1}^n \frac{(-1)^{j-1}}{j}\).
Euler Sums系列(五)的更多相关文章
- Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...
- Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...
- Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...
- Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2 ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- CSS 魔法系列:纯 CSS 绘制各种图形《系列五》
我们的网页因为 CSS 而呈现千变万化的风格.这一看似简单的样式语言在使用中非常灵活,只要你发挥创意就能实现很多比人想象不到的效果.特别是随着 CSS3 的广泛使用,更多新奇的 CSS 作品涌现出来. ...
- Netty4.x中文教程系列(五)编解码器Codec
Netty4.x中文教程系列(五)编解码器Codec 上一篇文章详细解释了ChannelHandler的相关构架设计,版本和设计逻辑变更等等. 这篇文章主要在于讲述Handler里面的Codec,也就 ...
- WCF编程系列(五)元数据
WCF编程系列(五)元数据 示例一中我们使用了scvutil命令自动生成了服务的客户端代理类: svcutil http://localhost:8000/?wsdl /o:FirstServic ...
- JVM系列五:JVM监测&工具
JVM系列五:JVM监测&工具[整理中] http://www.cnblogs.com/redcreen/archive/2011/05/09/2040977.html 前几篇篇文章介绍了介 ...
随机推荐
- Subway POJ - 2502 spfa
#include<cstdio> #include<cmath> #include<cstring> #include<cstring> #includ ...
- 《深入理解java虚拟机》读书笔记四——第五章
第五章 调优案例分析与实战
- 安装sublime简易笔记
1.安装编码工具sublime text3(下载地址,软件管家网盘) 2.安装完成后,下载sublime text3中与python相关的插件:package control 进入package co ...
- mybatis-plus - MybatisPlusAutoConfiguration
mybatis 的通用maper, 其实有很多, mybatis-plus 算是其中做的比较好的一款了. 这里就来看一下 mybatis-plus 是怎么实现这个通用mapper功能的. 一. Bas ...
- 题解【洛谷P3574】[POI2014]FAR-FarmCraft
题面 简化版题意: 有一棵 \(n\) 个点的树,有边权. 你初始在 \(1\) 号节点,你需要走遍整棵树为 \(2 \sim n\) 号点的居民分发电脑,但你的汽油只够经过每条边恰好两次. 一个居民 ...
- vector,list不是模板
vector和list在命名空间std里,还需要添加声明 using namespace std; 或者 std::list 也可以.
- Error: Unexpected HTTP status 413 'Request Entity Too Large' on
由于nginx的client_max_body_size设置过小,默认上传的文件小于所要上传的文件大小,把这个值调大就可以了,我这里在配置文件的server下更改如下: server { client ...
- C#设置一个控件可以鼠标拖动
C#设置一个控件可以鼠标拖动: 新建一个C#项目, 创建一个label控件, 设置label的鼠标按下和抬起事件分别为:label1_MouseDown和label1_MouseUp. 对代码进行如下 ...
- Python实现共享内存通信方式
创建共享内存python文件: import mmap import contextlib import time with contextlib.closing(mmap.mmap(-1, 100, ...
- Leetcode 面试题 01.01. 判定字符是否唯一
实现一个算法,确定一个字符串 s 的所有字符是否全都不同. 示例 1: 输入: s = "leetcode"输出: false 示例 2: 输入: s = "abc&qu ...