T1 [JZOJ6310] Global warming

题目描述

  给定整数 n 和 x,以及一个大小为 n 的序列 a。

  你可以选择一个区间 [l,r],然后令 a[i]+=d(l<=i<=r),其中 d 满足 |d|<=x。

  要求最大化 a 的最长上升子序列的长度,并输出该值。

数据范围

  对于 $5\%$ 的数据点,$n,x \leq 10$

  对于另外 $10\%$ 的数据点,$n,x \leq 50$

  对于另外 $13\%$ 的数据点,$n \leq 1000$

  对于另外 $10\%$ 的数据点,$x=0$

  对于另外 $20\%$ 的数据点,$x \leq 5$,$n \leq 5 \times 10^4$

  对于另外 $17\%$ 的数据点,$x=10^9$

  对于 $100\%$ 的数据点,$n \leq 2 \times 10^5$,$x \leq 10^9$

分析

  $Subtask$ 真是让人头大,玄学挂了两个点结果只得了 $62 \, pts$

  这题有几个很显然的地方

  令区间 $[l,r] \; (1 \leq l \leq r < n)$ 加上 $i \; (0 \leq i \leq x)$ 必不优于区间 $[l,n]$

  令区间 $[l,r] \; (1 < l \leq r \leq n)$ 减去 $i \; (0 \leq i \leq x)$ 必不优于区间 $[1,r]$

  令区间 $[l,n]$ 加上 $i \; (0 \leq i < x)$ 或令区间 $[1,r]$ 减去 $i$ 必不优于加上/减去 $x$

  由于加减实际上是等价的,所以我们假定让区间 $[1,r] \; (1 \leq r < n)$ 减去 $x$

  设 $f_i$ 表示减小的区间为 $[1,i-1]$ 且 $a_i$ 被选中时的最长上升子序列长度

  首先正序做一遍最长上升子序列可以处理出 $f$ 数组,然后倒序做一遍找出最优解

  若当前位置为 $i$,则 $ans_i=f_i \, +$ 以 $i$ 结尾的最长下降子序列长度(倒序)

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 200005 int n, x, pos, ans;
int a[N], q[N], f[N]; int main() {
scanf("%d%d", &n, &x);
for (int i = ; i <= n; i++) scanf("%d", a + i);
for (int i = ; i <= n; i++) {
f[i] = lower_bound(q + , q + q[] + , a[i]) - q - ;
pos = lower_bound(q + , q + q[] + , a[i] - x) - q;
q[pos] = a[i] - x; q[] = max(q[], pos);
}
q[] = ;
for (int i = n; i; i--) {
pos = lower_bound(q + , q + q[] + , a[i], greater<int>()) - q;
q[pos] = a[i]; q[] = max(q[], pos);
ans = max(ans, f[i] + pos);
}
printf("%d", ans); return ;
}

T2 [JZOJ6311] Mobitel

题目描述

  给定一个 r 行 s 列的矩阵,每个格子里都有一个正整数。

  问如果从左上角走到右下角,且每次只能向右或向下走到相邻格子,那么使得路径上所有数的乘积不小于 n 的路径有多少条?

  由于答案可能很大,所以请输出答案对 10^9+7 取模的结果。

数据范围

  对于 $20\%$ 的数据,矩阵中的数不超过 $10$

  对于 $50\%$ 的数据,$1 \leq r,s \leq 100$

  对于 $100\%$ 的数据,$1 \leq r,s \leq 300$,$1 \leq n \leq 10^6$,矩阵中的数不超过 $10^6$

分析

  显然可以先求出总路径数,再减去乘积小于 $n$ 的路径数得到答案

  刚开始很容易想到设 $f[i][j][k]$ 表示走到点 $(i,j)$ 处乘积为 $k$ 时的路径数

  但时间空间都不允许 $O(rsn)$ 的复杂度

  考虑优化状态 $k$,我们发现可以保存剩下还可以乘的数的状态

  即 $f[i][j][k]$ 表示走到点 $(i,j)$ 处乘积 $x$ 满足 $\lfloor \frac{n-1}{x} \rfloor =k$ 的路径数

  此时 $k$ 的种类数为 $2 \sqrt{n}$,总时间复杂度为 $O(rs \sqrt{n})$

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 305
#define M 2005 const int p = 1e9 + ;
int r, c, n, m, q, sum;
int g[N][N], f[][N][M];
int inv[N], w[M], id[]; int Sum() {
ll ans = ; inv[] = ;
for (int i = r; i <= r + c - ; i++)
ans = ans * i % p;
for (int i = ; i < c; i++) {
inv[i] = (ll)(p - p / i) * inv[p % i] % p;
ans = ans * inv[i] % p;
}
return (int)ans;
} int main() {
scanf("%d%d%d", &r, &c, &n); n--;
for (int x = , y; x <= n; x = y + )
y = n / (n / x), w[++m] = n / x, id[w[m]] = m;
f[][][] = ;
for (int i = ; i <= r; i++, q ^= ) {
memset(f[q ^ ], , sizeof f[q ^ ]);
for (int j = ; j <= c; j++) {
int x; scanf("%d", &x);
for (int k = ; k <= m; k++)
f[q ^ ][j][id[w[k] / x]] = (f[q ^ ][j][id[w[k] / x]] +
(f[q][j][k] + f[q ^ ][j - ][k]) % p) % p;
}
}
for (int i = ; i <= m; i++)
sum = (sum + f[q][c][i]) % p;
printf("%d", (Sum() - sum + p) % p); return ;
}

T3 [JZOJ6312] Lottery

题目描述

  定义两个序列对应位置上不同的值的个数不超过 k,则可称为 k 相似。

  现在有一个长度为 n 的序列 a,将它划分为 n−l+1 个长度为 l 的子串(第 i 个子串为 a[i]~a[i+l-1])

  有 q 组询问,第 j 组询问给出一个 kj,求每个子串与多少个其它的子串可称为 kj 相似。

数据范围

  对于 $25\%$ 的数据点,$n \leq 300$

  对于另外 $20\%$ 的数据点,$n \leq 2 \times 10^3$

  对于另外 $20\%$ 的数据点,$q=1$,$k_1=1$

  对于另外 $15\%$ 的数据点,$q=1$

  对于 $100\%$ 的数据点,$k_j \leq l \leq n \leq 10^4$,$q \leq 100$,$a_i \leq 10^9$

分析

  只要常数小,$n$ 方过一万有时也能成为正解 ——讲题人

  如果直接暴力判断相似,那么时间复杂度为 $O(n^2l)$

  实际上如果我们已知 $[l_1,r_1]$ 和 $[l_2,r_2]$ 的相似度,那么就可以 $O(1)$ 求出 $[l_1+1,r_1+1]$ 和 $[l_2+1,r_2+1]$ 相似度

  这样判断子串之间相似的复杂度为 $O(n^2)$

  如果我们用 $f[i][j]$ 表示 $i$ 串与 $j$ 串的不相似度,那么在每个子串输出答案时还需要遍历一遍其他所有子串,则输出时的时间复杂度为 $O(n^2q)$

  所以可以用 $f[i][k]$ 表示与 $i$ 串不相似度为 $k$ 的子串数,但此时空间复杂度依然无法接受

  我们发现询问次数非常小,所以数组第二维只需要开到 $q$,最后再用前缀和计算一下

  总时间复杂度为 $O(n^2)$,空间复杂度为 $O(nq)$

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 10005
#define M 105 int n, m, l, k;
int a[N], b[M], f[N][M], pos[N]; struct Query {int val, id, num;} q[M];
bool cmp1(Query x, Query y) {return x.val < y.val;}
bool cmp2(Query x, Query y) {return x.id < y.id;} int main() {
scanf("%d%d", &n, &l);
for (int i = ; i <= n; i++)
scanf("%d", a + i);
scanf("%d", &m);
for (int i = ; i <= m; i++)
scanf("%d", &q[i].val), q[i].id = i;
sort(q + , q + m + , cmp1);
for (int i = ; i <= m; i++)
q[i].num = i, b[i] = q[i].val;
for (int i = ; i <= l; i++)
pos[i] = lower_bound(b + , b + m + , i) - b;
for (int i = ; i + l - < n; i++, k = ) {
for (int j = ; j <= l; j++)
if (a[j] != a[j + i]) k++;
int p = pos[k]; f[][p]++; f[ + i][p]++;
for (int j = ; j + i + l - <= n; j++) {
k += (a[j + l - ] != a[j + i + l - ]) - (a[j - ] != a[j + i - ]);
p = pos[k]; f[j][p]++; f[j + i][p]++;
}
}
for (int i = ; i <= n - l + ; i++)
for (int j = ; j <= m; j++)
f[i][j] += f[i][j - ];
sort(q + , q + m + , cmp2);
for (int i = ; i <= m; i++) {
for (int j = ; j <= n - l + ; j++)
printf("%d ", f[j][q[i].num]);
printf("\n");
} return ;
}

2019-08-20 纪中NOIP模拟A组的更多相关文章

  1. 2019-08-21 纪中NOIP模拟A组

    T1 [JZOJ6315] 数字 题目描述

  2. 2019-08-15 纪中NOIP模拟B组

    T1 [JZOJ3455] 库特的向量 题目描述 从前在一个美好的校园里,有一只(棵)可爱的弯枝理树.她内敛而羞涩,一副弱气的样子让人一看就想好好疼爱她.仅仅在她身边,就有许多女孩子想和她BH,比如铃 ...

  3. 2019-08-25 纪中NOIP模拟A组

    T1 [JZOJ6314] Balancing Inversions 题目描述 Bessie 和 Elsie 在一个长为 2N 的布尔数组 A 上玩游戏. Bessie 的分数为 A 的前一半的逆序对 ...

  4. 2019-08-23 纪中NOIP模拟A组

    T1 [JZOJ2908] 矩阵乘法 题目描述 给你一个 N*N 的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第 K 小数. 数据范围 对于 $20\%$ 的数据,$N \leq 100$,$Q ...

  5. 2019-08-20 纪中NOIP模拟B组

    T1 [JZOJ3490] 旅游(travel) 题目描述 ztxz16如愿成为码农之后,整天的生活除了写程序还是写程序,十分苦逼.终于有一天,他意识到自己的生活太过平淡,于是决定外出旅游丰富阅历. ...

  6. 2019-08-13 纪中NOIP模拟B组

    T1 [JZOJ1534] rank 题目描述 小h和小R正在看之前的期末&三校联考成绩,小R看完成绩之后很伤心,共有n个学生,第i个学生有一个总成绩Xi,因为他的排名是倒数第k个,于是小R想 ...

  7. 2019-08-12 纪中NOIP模拟B组

    T1 [JZOJ4879] 少女觉 题目描述 “在幽暗的地灵殿中,居住着一位少女,名为古明地觉.” “据说,从来没有人敢踏入过那座地灵殿,因为人们恐惧于觉一族拥有的能力——读心.” “掌控人心者,可控 ...

  8. 2019-08-10 纪中NOIP模拟B组

    T1 [JZOJ1235] 洪水 题目描述 一天, 一个画家在森林里写生,突然爆发了山洪,他需要尽快返回住所中,那里是安全的. 森林的地图由R行C列组成,空白区域用点“.”表示,洪水的区域用“*”表示 ...

  9. 2019-08-07 纪中NOIP模拟B组

    T1 [JZOJ1385] 直角三角形 题目描述 二维平面坐标系中有N个位置不同的点. 从N个点选择3个点,问有多少选法使得这3个点形成直角三角形. 数据范围 $3 \leq N \leq 1500$ ...

随机推荐

  1. 注销Apache

    到D:\phpTools\Apache24\bin下运行cmd 输入httpd.exe -k uninstall -n apache24 回车后提示注销完成 接着把Apache的文件删了即可

  2. 量化投资学习笔记27——《Python机器学习应用》课程笔记01

    北京理工大学在线课程: http://www.icourse163.org/course/BIT-1001872001 机器学习分类 监督学习 无监督学习 半监督学习 强化学习 深度学习 Scikit ...

  3. C# 小游戏-拼图魔方【Game Puzzle】

    工作闲暇之余去逛了逛CodeProject,刚好现有项目主要用到就是winform,浏览了下照片,找到上周带着蛋挞打疫苗回家的照片,于是新生一记,如何把这些图片玩起来~ 80后应该都有印象,小时候有种 ...

  4. .NET Core MVC下的TagHelper

    .NET web开发者在开发过程中,一定都踩过的坑,明明修改了js文件,可是部署到生产环境,客户反馈说:“还是报错啊”..然后一脸懵逼的去服务器上看文件,确实已经更新了.有经验的coder可能就想到了 ...

  5. 回到未来:Smalltalk 编程系统

    Smalltalk 是19世纪70年代由 Alan Kay 设计的,第一个以面向对象(Object-Orientation)为主要范式的编程语言 1.Smalltalk 具有大量首创的特性,深刻影响了 ...

  6. 痞子衡嵌入式:ARM Cortex-M内核那些事(6)- 系统堆栈机制

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是ARM Cortex-M堆栈机制. 今天给大家分享的这篇依旧是2016年之前痞子衡写的技术文档,花了点时间重新编排了一下格式.前面痞子衡 ...

  7. #《Essential C++》读书笔记# 第七章 异常处理

    基础知识 异常处理机制有两个主要成分:异常的鉴定和发出,以及异常的处理方式.通常,不论是membe function和non-member function,都有可能产生异常以及处理异常.异常出现后, ...

  8. js对象模型2

    g

  9. 安装Nexus到Linux(源码)

    运行环境 系统版本:CentOS Linux release 7.4.1708 (Core) 软件版本:Sonatype-Nexus-3.14.0 硬件要求:无 安装过程 1. 调整系统参数 需要调整 ...

  10. python—lambda函数,三个常用的高阶函数

    """lambda 参数列表 : 返回值lambda 参数形式: 1.无参数:lambda:100 2.一个参数:lambda a: a 3.默认参数:lambda a, ...