洛谷 P1659 [国家集训队]拉拉队排练(Manacher)
题目链接:https://www.luogu.com.cn/problem/P1659
思路:
首先跑一遍Manacher,用$cnt_i$记录长为$i$的回文串有多少个。
所记录的$cnt$并不是最终的$cnt$,如$cnt_1$在$cnt_2$中也有,可用$sum=cnt_1+cnt_2$,然后长度为$i$的回文串实际有$sum$个,这就是下文中是$i^{sum}$的原因。
然后我们从$n$~$1$枚举(降序):
如果$cnt_i$中的$i$是偶数,则continue
如果是奇数,那么更新答案$ans=ans\times i^{sum}$,注意判断$sum$与$k$的大小关系,并用快速幂
AC代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll mod=; char str[N],s[N*];
int r[N*];
ll cnt[N]; void manacher(int len){
int t=;
s[]='$'; s[++t]='#';
for(int i=;i<=len;i++){
s[++t]=str[i];
s[++t]='#';
}
int pos=,mx=;
for(int i=;i<=t;i++){
if(i>mx) r[i]=;
else r[i]=min(r[*pos-i],mx-i);
while(i-r[i]>=&&i+r[i]<=t&&s[i-r[i]]==s[i+r[i]]) r[i]++;
if(i+r[i]>mx){
pos=i;
mx=i+r[i];
}
cnt[r[i]-]++;
}
} ll qsm(ll a,ll b){
ll ans=;
while(b){
if(b%) ans=ans*a%mod;
a=a*a%mod;
b=b/;
}
return ans;
} int main(){
int n;
ll k;
scanf("%d%lld",&n,&k);
scanf("%s",str+);
manacher(strlen(str+));
ll sum=,ans=;
for(int i=n;i>=;i--){
if(i%==) continue;
sum+=cnt[i];
if(sum<=k){
ans=ans*qsm(ll(i),sum)%mod;
k-=sum;
}
else{
ans=ans*qsm(ll(i),k)%mod;
k=; break;
}
}
if(k>) printf("-1\n");
else printf("%lld\n",ans);
return ;
}
AC代码
洛谷 P1659 [国家集训队]拉拉队排练(Manacher)的更多相关文章
- luogu P1659 [国家集训队]拉拉队排练
唔....话说好久没有发布题解了(手痒痒了 首先特别鸣谢lykkk大佬今天下午教我Manacher算法,甚是感谢 为了体现学习成果,写一篇蒟蒻版的题解(大佬勿喷 言归正传 题面——>在这儿 首先 ...
- [国家集训队] 拉拉队排练 - Manacher
用 Manacher 跑出回文串长,注意这里不需要偶数长度所以不需要对串做一些奇怪的处理 然后用前缀和搞一下,计算答案时跑快速幂即可 #include <bits/stdc++.h> us ...
- P1659 [国家集训队]拉拉队排练
思路 求出cnt和len之后,直接乘起来即可 代码 #include <cstdio> #include <algorithm> #include <cstring> ...
- 模板—点分治A(容斥)(洛谷P2634 [国家集训队]聪聪可可)
洛谷P2634 [国家集训队]聪聪可可 静态点分治 一开始还以为要把分治树建出来……• 树的结构不发生改变,点权边权都不变,那么我们利用刚刚的思路,有两种具体的分治方法.• A:朴素做法,直接找重心, ...
- [洛谷P1527] [国家集训队]矩阵乘法
洛谷题目链接:[国家集训队]矩阵乘法 题目背景 原 <补丁VS错误>请前往P2761 题目描述 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数. 输入输出格式 输入 ...
- 洛谷 P4555 [国家集训队]最长双回文串 解题报告
P4555 [国家集训队]最长双回文串 题目描述 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为abc,逆序为cba,不相同). 输入长度为\(n\)的串 ...
- 洛谷P1501 [国家集训队]Tree II(LCT,Splay)
洛谷题目传送门 关于LCT的其它问题可以参考一下我的LCT总结 一道LCT很好的练习放懒标记技巧的题目. 一开始看到又做加法又做乘法的时候我是有点mengbi的. 然后我想起了模板线段树2...... ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- 洛谷 P1407 [国家集训队]稳定婚姻 解题报告
P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...
随机推荐
- React Hooks 笔记1
useState const [state, setSate] = useState(initialState) 特征: setState 标识稳定,组件重新渲染时不会变化,useState 返回的第 ...
- 二叉堆(1)BinaryHeap
封装一个简单二叉堆,亦可视为优先队列. 测试文件 main.cpp: #include <iostream> #include "BinaryHeap.h" using ...
- 松软科技课堂:jQuery 效果 - 淡入淡出
jQuery Fading 方法 通过 jQuery,您可以实现元素的淡入淡出效果. jQuery 拥有下面四种 fade 方法: fadeIn() fadeOut() fadeToggle() fa ...
- Windows2008r2、正版安装包
最近发现有很多人找我要Windows 2008的安装包,为了方便,就分享在这儿一下,有需要的自行下载. 链接:https://pan.baidu.com/s/1YZFE7FxL8O_gtfAftcX ...
- Angular项目目录
0.模块介绍和基础知识 https://cloud.tencent.com/developer/section/1489514 1.如下图VSCode-- node_modules 第三方依赖包存放目 ...
- AntDesign(React)学习-9 Dva model reducer实践
今天肺炎增长数字依然吓人,感觉穿越到丧失片里了. 本节开始学习dva model使用,官网的讲解太文档化,对新手实践不太友好,自己简化了一个最简单的演示代码. 1.在src,models文件夹下创建u ...
- 04-Java基础语法【IDEA、方法】
重要内容记录: 01.IDE介绍 IDE(Integarted Development Environment)是Java集成开发环境,是一种专门用来提高Java开发效率的软件. 免费的IDE:Ecl ...
- PHP 把秒数转为时分秒格式
PHP函数 1.gmdate $seconds = 174940;$hours = intval($seconds/); $time1 = $hours."小时".gmdate(' ...
- Ubuntu18.04 一条命令安装caffe问题
由于caffe安装坑很多,而且caffe框架很久不更新了,微调对框架影响不大,所以对与ubuntu18.04在caffe官网提供了一条命令安装,避免很多踩坑痛苦. CPU的一条命令安装: sudo a ...
- Visual detection of structural changes in time-varying graphs using persistent homology
PKU blog about this paper Basic knowledge: 1. what is time-varying graphs? time-varying graph VS st ...