[Agc081F/At2699]

给出一个拥有 \(H\times W\) 个格子的棋盘,每个格子的颜色为黑色或白色。 Snuke 可以进行任意次下列操作:

选择棋盘中的一行或一列,将这一行或一列的颜色翻转(黑变成白,白变成黑) Snuke 想知道,在他进行操作后,棋盘中最大的全黑矩形最大能为多少。

考虑 \(2\times 2\) 方格,当且仅当偶数个黑时,可以做成全黑

大矩形能做成全黑,当且仅当所有 \(2\times 2\) 子格都是偶数个黑

然后就是一个很朴素的单调栈求最大矩形了

注意到答案最小为\(max(n,m)\),所以最后要处理一下

我大概是菜的连单调栈维护矩形都不会写了

#include <bits/stdc++.h>
using namespace std; int h[2005],a[2005][2005],b[2005][2005],f[2005],p[2005],r,n,m,ans;
char c[2005][2005]; int main() {
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) {
scanf("%s",c[i]+1);
for(int j=1;j<=m;j++) {
b[i][j] = c[i][j]=='#'?1:0;
}
}
for(int i=1;i<n;i++) {
for(int j=1;j<m;j++) {
if((b[i][j]+b[i+1][j]+b[i][j+1]+b[i+1][j+1])%2==0) {
a[i][j]=1;
}
}
}
for(int i=1;i<m;i++) h[i]=0;
for(int i=1;i<n;i++) {
for(int j=1;j<m;j++) {
if(a[i][j]) h[j]++;
else h[j]=0;
}
memset(f,0,sizeof f);
memset(p,0,sizeof p);
r=0;
for(int j=1;j<=m;j++) {
while(r && f[r] >= h[j]) {
ans=max(ans, (j-p[r-1])*(f[r]+1));
--r;
}
f[++r] = h[j];
p[r] = j;
//ans=max(ans, (j-p[1]+2)*(f[1]+1));
}
//while(r) if(i-h[p[r]]+1) ans=max(ans, (m-p[r]+1)*(f[r]+1)), r--;
//if(r) cout<<(m-p[1]+1)<<" "<<(f[1]+1)<<endl;
}
cout<<max(ans,max(n,m))<<endl;
}

[Agc081F/At2699] Flip and Rectangles - 单调栈,结论的更多相关文章

  1. [AT2699]Flip and Rectangles

    题目大意:有一个$n\times m$的$01$矩阵,可以把任意行或列反转,问最大的全为一的子矩阵的面积 题解:有一个结论:若一个子矩形$S$中的任意一个$2\times 2$的子矩形都含有偶数个$1 ...

  2. Gym - 101102D Rectangles (单调栈)

    Given an R×C grid with each cell containing an integer, find the number of subrectangles in this gri ...

  3. AT2699 [ARC081D] Flip and Rectangles

    以下是简要题解: 首先思考如何判定一个矩形是否能通过操作变成全黑. 首先从简单而又特殊的 \(2 \times 2\) 的矩形开始,不难发现只要其中黑色数量不为奇数即可. 近一步拓展可以发现,一个矩形 ...

  4. [Arc081F]Flip and Rectangles

    [Arc081F]Flip and Rectangles 试题分析 首先考虑如何操作,发现我们只会选若干行和若干列来进行一次取反. 这个东西相当于什么呢?相当于交点不变,然后这些行和这些列的其它点取反 ...

  5. HDU-4252 A Famous City(单调栈)

    最后更新于2019.1.23 A Famous City ?戳这里可以前往原题 Problem Description After Mr. B arrived in Warsaw, he was sh ...

  6. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  7. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  8. poj 2559 Largest Rectangle in a Histogram (单调栈)

    http://poj.org/problem?id=2559 Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 6 ...

  9. POJ 2559 Largest Rectangle in a Histogram (单调栈或者dp)

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15831 ...

随机推荐

  1. Girlfreind:1 Vulnhub Walkthrough

    靶机链接: https://www.vulnhub.com/entry/me-and-my-girlfriend-1,409/ 主机扫描: HTTP 目录访问,提示无权限,右键源码,提示XXF即可 正 ...

  2. ELK学习004:Elasticsearch常规操作

    CRUD 在我们的项目中有日志是一个必不可少的东西,但是日志的检索是一个很麻烦的事情,如每天一个日志,要找到问题就得一个一个找,并不能做到检索功能,这还算好的,如果是分布式的,每个机器都得找一遍,这种 ...

  3. 伟大的悲剧——记CSP2019

    伟大的悲剧——记CSP2019 就算伟大,依然悲剧…… 现在我好恨自己 我……差一点……就是省一了…… 这一点是多少呢? 2分! 1名! 省一65人,我第66! 唉……太悲催了…… jx的分数线居然还 ...

  4. [转载]花了半个月,终于把Python库全部整理出来了,非常全面

    库名称简介 Chardet 字符编码探测器,可以自动检测文本.网页.xml的编码. colorama 主要用来给文本添加各种颜色,并且非常简单易用. Prettytable 主要用于在终端或浏览器端构 ...

  5. 全面了解Java中的15种锁概念及机制!

    在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类.介绍的内容如下: 1.公平锁 / 非公平锁 2.可重入锁 / 不可重入锁 3.独享锁 / 共享锁 4.互斥锁 / 读 ...

  6. 如何将文本放置在div的底部显示呢?

    转自:将文本定位于div的底部的方法  摘要: 下文讲述将文本放于div的底部的两种方法,如下所示: 实现思路: 思路1:采用绝对定位的方式,将其放置于div的底部 思路2:使用Line-height ...

  7. JS中require函数的警告提示

    在JS中常常使用require函数来引入文件或者路径,不过在使用时需要注意一点,它的参数必须是一串完整的字符串常量或者是由字符常量与变量拼接. (一)require函数的参数为一个变量,如下图所示: ...

  8. disabled属性对form表单提交的影响

    在form表单里,如果对input加入disabled="disabled"或disabled="true"等属性,form表单提交的时候,就不会传值到后台. ...

  9. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  10. 吴裕雄--天生自然HADOOP操作实验学习笔记:hbase的shell应用v2.0

    HRegion 当表的大小超过设置值的时候,HBase会自动地将表划分为不同的区域,每个区域包含所有行的一个子集.对用户来说,每个表是一堆数据的集合,靠主键来区分.从物理上来说,一张表被拆分成了多块, ...