Problem: time series classification

shallow RNNs: the first layer splits the input sequence and runs several independent RNNs.  The second layer consumes the output of the first layer to capture long dependencies.

We improve inference time over standard RNNs without compromising accuracy.

Time series -------- temporal dependencies. Sequential models such as RNN are particularly well-suited in this context.

Directly leveraging RNNs for prediction in constrained scenarios is challenging, and requires large training and inference costs.

?? how long the recurrence of RNN should be?

Each time series is divided into independent parts, and a shared RNN operates on each brick independently, thus ensuring a small model size and short recurrence.

Only has a short recurrence.

Supplementary knowledge:

1. theoretical justification

2. weak/ strong assumptions; Model flow:

  • assumption/ environment ~ weak or strong
  • model
  • results
  • evaluation ~ baseline or indicator.

3. Sequential models: RNN;

PP: Shallow RNNs: a method for accurate time-series classification on tiny devices的更多相关文章

  1. PP: Triple-shapelet networks for time series classification

    Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...

  2. PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    From: Stanford University; Jure Leskovec, citation 6w+; Problem: subsequence clustering. Challenging ...

  3. PP: Extracting statisticla graph features for accurate and efficient time series classification

    Problem: TSC, time series classification; Traditional TSC: find global similarities or local pattern ...

  4. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  5. PP: Multilevel wavelet decomposition network for interpretable time series analysis

    Problem: the important frequency information is lack of effective modelling. ?? what is frequency in ...

  6. Shallow copy and Deep copy

    Shallow copy and Deep copy 第一部分: 一.来自wikipidia的解释: Shallow copy One method of copying an object is t ...

  7. System and method for assigning a message

    A processor of a plurality of processors includes a processor core and a message manager. The messag ...

  8. ICLR 2014 International Conference on Learning Representations深度学习论文papers

    ICLR 2014 International Conference on Learning Representations Apr 14 - 16, 2014, Banff, Canada Work ...

  9. 计算机视觉code与软件

    Research Code A rational methodology for lossy compression - REWIC is a software-based implementatio ...

随机推荐

  1. Mysql:初识MySQL

    转载自:https://www.cnblogs.com/hellokuangshen/archive/2019/01/09/10246029.html Mysql:初识MySQL 只会写代码的是码农: ...

  2. Hadoop架构及集群

    Hadoop是一个由Apache基金会所开发的分布式基础架构,Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了 ...

  3. GPU体系架构(二):GPU存储体系

    GPU是一个外围设备,本来是专门作为图形渲染使用的,但是随着其功能的越来越强大,GPU也逐渐成为继CPU之后的又一计算核心.但不同于CPU的架构设计,GPU的架构从一开始就更倾向于图形渲染和大规模数据 ...

  4. Python和Anoconda和Pycharm联合使用教程

    简介 Python是一种跨平台的计算机程序设计语言.是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的.大型项目的开发. ...

  5. Vue组件库读取自定义配置文件

    有这样一个场景,在组件库中新增一个配置文件,后续只修改一下配置文件中的配置项就可以实现不同的需求,下面就让我们I一起来实现吧. (一)在在项目的根目录(package.json所在目录)中创建一个vu ...

  6. Qt的qDebug()改写为cout

    经常用c++,qDebug()用的不习惯,将其改为cout,并且为了方便调试,还添加了文件名及行号. 代码如下: // __FILE__文件名,__LINE__行号,如果想看时间还可以添加__TIME ...

  7. C. Long Beautiful Integer

    题目思路还是很直接,首先按要求生成字符串.如果该目标字符串小于原字符串,那么从第k位开始,找到最后一个非9的位置,++,同时如果有9,要考虑进位(一开始没有考虑WA了一次). 犯了一个错误,就是比较字 ...

  8. 吴裕雄--天生自然 R语言开发学习:集成开发环境\工具RStudio的安装与配置

  9. Mybaits(10)N+1问题

    N+1问题 从上面的例子日志中我们可以看到所有级联都成功了,但是引发了性能问题,例如我们在查询雇员的信息和工作任务信息,此时体检表和工牌信息就是多余,我们没必要查询一次.如果想日志体现的那样,取出了所 ...

  10. Spark学习之路 (十)SparkCore的调优之Shuffle调优[转]

    概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优 ...