【JZOJ4893】【NOIP2016提高A组集训第15场11.14】过河
题目描述
数据范围
解法
由于同一个点,同一个圆盘最多只会走一次。
把(i,j)当作一个点,表示第i个点,放第i个圆盘。
那么就可以使用最短路。
时间复杂度为O(n4∗k)。
事实上存在冗余圆盘,一个相对某个圆盘又贵又小的圆盘即是冗余圆盘。
给圆盘排序,那么令(i,j)只给(k,l)连一条边使得l最小,(i,j)给(i,j+1)连一条边。
那么任意一条原图中的边就可以分解为上述两类边。
那么边数就降到n3。
spfa的时间复杂度为O(n3∗k)。
如果使用dijstra的时间复杂度为O(n3∗logn)。
代码
Const
maxn=257;
Type
longint=cardinal;
Var
t,n,m,w,i,j,k,l:cardinal;
dis:array[1..maxn,1..maxn] of longint;
bz:array[1..maxn,1..maxn] of boolean;
a:array[1..maxn,0..1] of longint;
b:array[0..maxn,0..1] of longint;
c:array[0..maxn*maxn*maxn,0..1] of word;
ban:array[1..maxn] of boolean;
d:array[0..maxn] of longint;
head,tail:longint;
ans:longint;
path:array[1..maxn,1..maxn,1..maxn] of word;
fi:array[1..maxn,1..maxn] of longint;
la:array[1..maxn*maxn*maxn] of longint;
ne:array[1..maxn*maxn*maxn] of longint;
cnt,tot:longint;
x,y,z:longint;
Function min(a,b:longint):longint;
begin
if (a>b) then exit(b);
exit(a);
end;
Procedure add_line(a,b,c:longint);
begin
inc(tot);
ne[tot]:=fi[a][b];
la[tot]:=c;
fi[a][b]:=tot;
end;
Procedure add(x,y,z:longint);
begin
if (dis[x][y]>z) then
begin
dis[x][y]:=z;
if (z<ans) and (bz[x][y]=false) then
begin
inc(tail);
c[tail][0]:=x;
c[tail][1]:=y;
bz[x][y]:=true;
if (head<tail) and (dis[c[head+1][0]][c[head+1][1]]>dis[c[tail][0]][c[tail][1]]) then
begin
c[0]:=c[tail];
c[tail]:=c[head+1];
c[head+1]:=c[0];
end;
end;
end;
end;
Procedure qsort(l,r:longint);
var
i,j,k,mid,mm,tmp:longint;
begin
i:=l;
j:=r;
mid:=b[(l+r) div 2][0];
repeat
while (b[i][0]<mid) do inc(i);
while (b[j][0]>mid) do dec(j);
if (i<=j) then
begin
b[0]:=b[i];
b[i]:=b[j];
b[j]:=b[0];
dec(j);
inc(i);
end;
until i>j;
if (i<r) then qsort(i,r);
if (l<j) then qsort(l,j);
end;
Function judge(i,j,k,l:longint):boolean;
begin
exit(int64(a[i][0]-a[j][0])*(a[i][0]-a[j][0])+(a[i][1]-a[j][1])*(a[i][1]-a[j][1])<=int64(b[l][0]+b[k][0])*(b[l][0]+b[k][0]));
end;
Procedure extreme;
begin
qsort(1,m);
for i:=1 to n do
for j:=1 to n do
begin
l:=1;
for k:=m downto 1 do
begin
while (l<=m) do
begin
if (judge(i,j,k,l)) then
begin
path[i][k][j]:=l;
break;
end
else inc(l);
end;
if (path[i][k][j]>0) then add_Line(i,k,j);
end;
end;
end;
Procedure spfa;
var
i,j,k:cardinal;
Begin
while (head<tail) do
begin
inc(head);
if (c[head][1]<m) then
begin
add(c[head][0],c[head][1]+1,dis[c[head][0]][c[head][1]]+b[c[head][1]+1][1]-b[c[head][1]][1]);
end;
k:=fi[c[head][0]][c[head][1]];
while (k>0) do
begin
i:=la[k];
j:=path[c[head][0]][c[head][1]][i];
add(i,j,dis[c[head][0]][c[head][1]]+b[j][1]);
k:=ne[k];
end;
if (a[c[head][0]][1]+b[c[head][1]][0]>=w) then ans:=min(dis[c[head][0]][c[head][1]],ans);
bz[c[head][0]][c[head][1]]:=false;
end;
End;
Procedure prepare;
begin
readlN(n,m,w);
for i:=1 to n do
begin
readln(a[i][0],a[i][1]);
end;
for i:=1 to m do
begin
readln(b[i][0],b[i][1]);
end;
fillchar(ban,sizeof(ban),0);
for i:=1 to m do for j:=i+1 to m do
if (b[i][0]>=b[j][0]) and (b[i][1]<=b[j][1]) then ban[j]:=true
else if (b[i][0]<=b[j][0]) and (b[i][1]>=b[j][1]) then ban[i]:=true;
d[0]:=0;
for i:=1 to m do if (ban[i]=false) then
begin
inc(d[0]);
d[d[0]]:=i;
end;
for i:=1 to d[0] do b[i]:=b[d[i]];
m:=d[0];
fillchar(dis,sizeof(dis),127);
fillchar(path,sizeof(path),0);
fillchar(fi,sizeof(fi),0);
tot:=0;
head:=0;
tail:=0;
ans:=maxlongint;
extreme;
for i:=1 to n do
for j:=1 to m do
begin
if (b[j][0]>=a[i][1]) then
begin
add(i,j,b[j][1]);
break;
end;
end;
end;
Procedure getans;
begin
if (ans<2000000000) then writeln(ans)
else writeln('impossible');
end;
Begin
assign(input,'river.in');reset(input);
assign(output,'river.out');rewrite(output);
readln(t);
for t:=1 to t do
begin
prepare;
spfa;
getans;
end;
//writeln(cnt);
close(output);close(input);
End.
启发
去除冗余
差分
本题中:原图共有n4,考虑到如果(i,j)可以到达(k,l),那么(i,j)也一定可以到达(k,l’),其中l’的半径比l大。如果存在这样的关系:
并且dis[x][z]=dis[y][z]+dis[x][y]。
那么(x,z)这条边显然可以省略。
当大量存在这样的边时,如本题,就可以优化边数。
spfa优化
1.SFL优化
尽量维持决策遍历队列的单调性,这样可以使得以更高的频率用更优的点更新。
具体而言,如果dis[b[head+1]]>dis[b[tail]],则swap(b[head+1],b[tail])。
2.单点最短路优化
由于spfa自带求单源到所有点的最短路,如果我们只需要求单源到单汇的最短路,那么显然如果当前节点比目标节点更劣就直接跳过。
【JZOJ4893】【NOIP2016提高A组集训第15场11.14】过河的更多相关文章
- JZOJ 【NOIP2016提高A组集训第16场11.15】兔子
JZOJ [NOIP2016提高A组集训第16场11.15]兔子 题目 Description 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3 ...
- JZOJ 【NOIP2016提高A组集训第16场11.15】SJR的直线
JZOJ [NOIP2016提高A组集训第16场11.15]SJR的直线 题目 Description Input Output Sample Input 6 0 1 0 -5 3 0 -5 -2 2 ...
- 【JZOJ4896】【NOIP2016提高A组集训第16场11.15】兔子
题目描述 在一片草原上有N个兔子窝,每个窝里住着一只兔子,有M条路径连接这些窝.更特殊地是,至多只有一个兔子窝有3条或更多的路径与它相连,其它的兔子窝只有1条或2条路径与其相连.换句话讲,这些兔子窝之 ...
- 【JZOJ4895】【NOIP2016提高A组集训第16场11.15】三部曲
=v= 因为外来的入侵,国王决定在某些城市加派士兵.所有城市初始士兵数量为0.当城市 被加派了k名士兵时.城市i的所有子城市需要被加派k+1名士兵.这些子城市的所有子城市需要被加派k+2名士兵.以此类 ...
- 【JZOJ4894】【NOIP2016提高A组集训第16场11.15】SJR的直线
题目描述 数据范围 解法 考虑逐次加入每一条直线. 对于当前已加入的直线集合L,现在要新加入一条直线l. 那么它产生的贡献,与平行线有关. 对于任意三条直线,如果其中任意两条平行,那么将不做贡献. 所 ...
- 【NOIP2016提高A组集训第4场11.1】平衡的子集
题目 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 分析 如果暴力枚举每个人被分到哪 ...
- 【JZOJ4841】【NOIP2016提高A组集训第4场11.1】平衡的子集
题目描述 夏令营有N个人,每个人的力气为M(i).请大家从这N个人中选出若干人,如果这些人可以分成两组且两组力气之和完全相等,则称为一个合法的选法,问有多少种合法的选法? 数据范围 40%的数据满足: ...
- 【NOIP2016提高A组集训第13场11.11】最大匹配
题目 mhy12345学习了二分图匹配,二分图是一种特殊的图,其中的点可以分到两个集合中,使得相同的集合中的点两两没有连边. 图的"匹配"是指这个图的一个边集,里面的边两两不存在公 ...
- 【JZOJ4901】【NOIP2016提高A组集训第18场11.17】矩阵
题目描述 他是一名普通的农电工,他以一颗无私奉献的爱岗敬业之心,刻苦钻研业务,以娴熟的技术.热情周到的服务赢得了广大客户的尊敬和赞美.他就是老百姓称为"李电"的李春来. 众所周知, ...
随机推荐
- idea使用及其快捷键(Jetbrains很多是通用的)(转)
Java程序员肯定会使用idea进行开发,因为其非常强大,很好用,而且可以很傻瓜式导入gradle,用来做SSM项目也很简单 学生是可以使用教育邮箱或者上床学生证使用免费的jetbrains全家桶的, ...
- python初学小记
使用PyCharm向世界打招呼! print (“Hello world!”) 介绍自己的基本信息的方法 name = input("name:")age = int(input( ...
- Python中函数的定义必须在调用的前面
# -*- coding:utf-8 -*- Python中函数的定义必须在调用的前面,但是在函数的内部调用一个函数,不用考虑顺序,只要被调用的函数被定义了即可 #标准的先函数定义,后函数调用def ...
- TZ_01MyBatis_jdbcConfig.properties
jdbc.driver=com.mysql.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3306/mybatis?serverTimezone=GMT jd ...
- [转]web计时机制——performance对象
页面性能一直都是Web开发人员比较关注的领域.但在实际应用中,度量页面性能的指标,是javascript的Date对象.Web Timing API改变了这个局面,让开发人员通过javascript就 ...
- webpack4配置react开发环境
webpack4大大提高了开发效率,简化了配置复杂度,作为一个大的版本更新,作为一个对开发效率执着的爱折腾的程序员,已经忍不住要尝尝鲜了 首先是cli和webpack的分离,开发webpack应用程序 ...
- python 3.0读取文件出现编码错误(illegal multibyte sequence )
代码如下: myfile2=open('e:/enterprise.xlsx',mode = 'r') file2_content=myfile2.readlines() print(file2_co ...
- vue前后端分离
axios前后端交互 安装 一定要安装到`项目目录下 cnpm install axios 配置 在main.js中配置 //配置axios import axios from 'axios' Vue ...
- Redis数据库在ubuntu16.04下的安装
1.安装 sudo apt-get install redis-server 2.启动 sudo service redis-server start 3.查看 ps aux|grep redis 4 ...
- wordpress主题之后台菜单编辑,小工具
1一:菜单编辑 在functions.php 文件加入 if (function_exists('register_nav_menus')) { register_nav_menus(array( / ...