洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)
题意:求$\sum_{i=a}^{b}\sum_{j=c}^{d}[gcd(i,j)==k]$(1<=a,b,c,d,k<=50000)。
是洛谷P3455 [POI2007]ZAP-Queries加强版,多了下界。
设$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$
根据容斥可以显然的得出Ans=f(b,d)-f(b,c-1)-f(a-1,d)+f(a-1,c-1)。
对于f(n,m)的求解:
$f(n,m)=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==k]$
$=\sum_{i=1}^{\lfloor \frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor \frac{m}{k}\rfloor}[gcd(i,j)==1]$
$=\sum_{d=1}^{\lfloor \frac{n}{k}\rfloor}\mu(d){\lfloor \frac{n}{kd}\rfloor}{\lfloor \frac{m}{kd}\rfloor}$
预处理莫比乌斯函数前缀和,后面整除分块。
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
bool p[N];
int pri[N],tot,mu[N];
void init() {
mu[]=;
for(int i=;i<N;i++) {
if(!p[i]) pri[tot++]=i,mu[i]=-;
for(int j=;j<tot&&pri[j]*i<N;j++) {
p[pri[j]*i]=true;
if(i%pri[j]==) {
mu[i*pri[j]]=;
break;
}
else mu[i*pri[j]]=-mu[i];
}
}
for(int i=;i<N;i++) mu[i]+=mu[i-];
}
ll cal(int n,int m,int k) {
if(n>m) swap(n,m);
ll ans=;
for(int l=,r;l<=n;l=r+) {
r=min(n/(n/l),m/(m/l));
ans+=1LL*(mu[r]-mu[l-])*(n/k/l)*(m/k/l);
}
return ans;
}
int main() {
init();
int T,a,b,c,d,k;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",cal(b,d,k)-cal(b,c-,k)-cal(a-,d,k)+cal(a-,c-,k));
}
return ;
}
洛谷P2522 [HAOI2011]Problem b (莫比乌斯反演+容斥)的更多相关文章
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ2301:[HAOI2011]Problem b(莫比乌斯反演,容斥)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
传送门 我们考虑容斥,设$ans(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(a,b)==k]$,这个东西可以和这一题一样去算洛谷P3455 [POI2007]ZAP-Quer ...
- 洛谷 P2522 [HAOI2011]Problem b (莫比乌斯反演+简单容斥)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
- 洛谷P2522 - [HAOI2011]Problem b
Portal Description 进行\(T(T\leq10^5)\)次询问,每次给出\(x_1,x_2,y_1,y_2\)和\(d\)(均不超过\(10^5\)),求\(\sum_{i=x_1} ...
- BZOJ 2301 Problem b (莫比乌斯反演+容斥)
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...
- Luogu P2522 [HAOI2011]Problem b 莫比乌斯反演
设$f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)==d],\\F(n)=\sum_{n|d}f(d)=\lfloor \frac{N}{n} \rfloor \lflo ...
随机推荐
- [转]C#接收邮件
最近由于工作需要,接触到了邮件服务器.以前我用CF写过,感觉没有什么,我想用C#来实现会更简单,但是万万没想到C#没有提供邮件接收的方法,令我很不解.通过我在网上查找,发现了一个国外公司写好的接收邮件 ...
- leetcode 847. Shortest Path Visiting All Nodes 无向连通图遍历最短路径
设计最短路径 用bfs 天然带最短路径 每一个状态是 当前的阶段 和已经访问过的节点 下面是正确但是超时的代码 class Solution: def shortestPathLength(self, ...
- tp5 报 A non well formed numeric value encountered 的错解决办法
thinkphp5出现A non well formed numeric value encountered的解决办法修改formatDateTime方法如下 默认值: if (is_null($th ...
- LA2965 Jurassic Remains
Jurassic Remains https://vjudge.net/problem/UVALive-2965 Paleontologists in Siberia have recently fo ...
- 跟我一起做一个vue的小项目(九)
接下来我们进行的就是城市列表页面数据额动态渲染. 也是在mock数据,进行动态渲染 //city.json { "ret": true, "data":{ &q ...
- mysql导出数据库某些表的数据
# 导出数据,一般从从库导出,减少主库的压力.mysqldump -hhostname -P3306 --single-transaction --master-data= database_name ...
- CSS实例 display display 边距
CSS学习大纲 在标签上设置style属性: background-color:#2459a2 ; height:48px ; 编写CSS样式: 1.标签的style属性 2.写在head里面,sty ...
- Hibernate中的Query
//1:创建query对象,方法里面写hql语句 Query query = session.createQuery("from User"); //2:利用query对象中的方法 ...
- mybatis官网文档mybatis_doc
在平时的学习中,我们可以去参考官网的文档来学习,这个文档有中文的,方便我们去阅读,而且这里的分类很详细. 官网文档链接:http://www.mybatis.org/mybatis-3/zh/inde ...
- H5C3--语义标签以及语义标签IE8兼容,表单元素新属性,度量器,自定义属性,dataList,网络监听,文件读取
HTML5新增标签以及HTML5新增的api 1.H5并不是新的语言,而是html语言的第五次重大修改--版本 2.支持:所有的主流浏览器都支持h5.(chrome,firefox,s ...