本篇内容有:如何根据坐标有目的的选择(where)、如何根据坐标有目的的更新(scatter_nd)、如何生成一个坐标系()

1.where

where针对的tensor是一个bool类型的tensor,即元素都由True或False组成,where(tensor)返回元素为True的位置

# 随机生成符合正态分布的[3,3]的tensor
a = tf.random.normal([3,3])
print(a)
# 将其对应的bool矩阵赋值给mask
mask = a>0
print(mask)
# 通过mask取到true对应的a的元素值
print(tf.boolean_mask(a,mask))
# 通过where获取true的位置
indices = tf.where(mask)
print(indices)
# 通过indices从a中取元素
print(tf.gather_nd(a,indices))

print(mask)
# 定义A tensor元素全为1
A = tf.ones([3,3])
# 定义B tensor元素全为0
B = tf.zeros([3,3])
# 采样时取A上的true B上的false
print(tf.where(mask,A,B))

2.scatter_nd

# 指定更新值的index
indices = tf.constant([[4],[3],[1],[7]])
# 指定更新元素
updates = tf.constant([9,10,11,12])
# 指定底板shape
shape = tf.constant([8])
print(tf.scatter_nd(indices,updates,shape))

# 指定更新元素的索引
indices = tf.constant([[0],[2]])
# 指定更新元素的值
updates = tf.constant([
[[5,5,5,5],[6,6,6,6],[7,7,7,7],[8,8,8,8]],
[[5,5,5,5],[6,6,6,6],[7,7,7,7],[8,8,8,8]]
])
print(updates.shape)
# 指定底板shape
shape = tf.constant([4,4,4])
print(tf.scatter_nd(indices,updates,shape))

3.meshgrid

# 生成y轴,范围-2,2,元素个数5个
y = tf.linspace(-2,2,5)
print(y)
# 按照相同方式生成x轴
x = tf.linspace(-2,2,5)
# 生成坐标系
points_x,points_y = tf.meshgrid(x,y)
print(points_x.shape)

然后通过tf.stack方法,即可实现x和y的合并,从而生成点的坐标

tensorflow高阶操作的更多相关文章

  1. 吴裕雄--天生自然TensorFlow2教程:高阶操作

    import tensorflow as tf a = tf.random.normal([3, 3]) a mask = a > 0 mask # 为True元素,即>0的元素的索引 i ...

  2. Python之旅Day3 文件操作 函数(递归|匿名|嵌套|高阶)函数式编程 内置方法

    知识回顾 常见五大数据类型分类小结:数字.字符串.列表.元组.字典 按存值个数区分:容器类型(列表.字典.元组) 标量原子(数字.字符串) 按是否可变区分:可变(列表.字典) 不可变(数字.字符串.元 ...

  3. Python学习笔记八:文件操作(续),文件编码与解码,函数,递归,函数式编程介绍,高阶函数

    文件操作(续) 获得文件句柄位置,f.tell(),从0开始,按字符数计数 f.read(5),读取5个字符 返回文件句柄到某位置,f.seek(0) 文件在编辑过程中改变编码,f.detech() ...

  4. Python3基础(3)集合、文件操作、字符转编码、函数、全局/局部变量、递归、函数式编程、高阶函数

    ---------------个人学习笔记--------------- ----------------本文作者吴疆-------------- ------点击此处链接至博客园原文------ 1 ...

  5. python基础编程: 编码补充、文件操作、集合、函数参数、函数递归、二分查找、匿名函数与高阶函数

    目录: 编码的补充 文件操作 集合 函数的参数 函数的递归 匿名函数与高阶函数 二分查找示例 一.编码的补充: 在python程序中,首行一般为:#-*- coding:utf-8 -*-,就是告诉p ...

  6. TensorFlow低阶API(四)—— 图和会话

    简介 TensorFlow使用数据流图将计算表示为独立的指令之间的依赖关系.这可生成低级别的编程模型,在该模型中,您首先定义数据流图,然后创建TensorFlow会话,以便在一组本地和远程设备上运行图 ...

  7. TensorFlow低阶API(二)—— 张量

    简介 正如名字所示,TensorFlow这一框架定义和运行涉及张量的计算.张量是对矢量和矩阵向潜在的更高维度的泛化.TensorFlow在内部将张量表示为基本数据类型的n维数组. 在编写TensorF ...

  8. TensorFlow低阶API(一)—— 简介

    简介 本文旨在知道您使用低级别TensorFlow API(TensorFlow Core)开始编程.您可以学习执行以下操作: 管理自己的TensorFlow程序(tf.Graph)和TensorFl ...

  9. JavaScript高阶函数

    所谓高阶函数(higher-order function) 就是操作函数的函数,它接收一个或多个函数作为参数,并返回一个新函数. 下面的例子接收两个函数f()和g(),并返回一个新的函数用以计算f(g ...

随机推荐

  1. HDU_1232_并查集

    http://acm.hdu.edu.cn/showproblem.php?pid=1232 第一道并查集,挺好理解的,初始化,查找根节点,连接,路径压缩. #include<iostream& ...

  2. JDK11和JDK8类加载器的区别

    如下代码: public class Test07 { public static void main(String[] args) throws ClassNotFoundException { / ...

  3. OpenCV3入门(七)图像形态学

    1.膨胀 所谓的图片的膨胀处理,其实就是在图像的边缘添加像素值,使得整体的像素值扩张,进而达到图像的膨胀效果. 对Z2上元素集合A和结构体元素S,使用S对A进行腐蚀,记作: A⊕S={z|(S)z ∩ ...

  4. JAVA 调用控件开发

    最近homoloCzh有个小伙伴接到一个需求说是把一个c# 写的具备扫描.调阅等功能 winfrom 影像控件嵌入到java Swing当中,让小伙伴很苦恼啊,从年前一直研究到年后,期间用了很多种方法 ...

  5. Hexo部署到Gitee/Coding常见的错误

    全网最全小白搭建Hexo+Gitee/Coding 全网最全小白搭建Hexo+Gitee/Coding 本站内容已全部转移到https://www.myyuns.ltd,具体请移步到www.myyun ...

  6. 详解CopyOnWrite容器及其源码

    详解CopyOnWrite容器及其源码 在jave.util.concurrent包下有这样两个类:CopyOnWriteArrayList和CopyOnWriteArraySet.其中利用到了Cop ...

  7. 软件bug描述(android)

    1.bug主题:主要操作+bug主题 主题要简单明了,即开发一看主题就知道该问题. 2.描述: 作用:便于开发重现和定位缺陷的 2.1前置条件 2.2操作步骤 2.3预期结果 2.4实际结果 2.5备 ...

  8. 【转载】Java的Vector,ArrayList,LinkedList

    首先看这两类都实现List接口,而List接口一共有三个实现类,分别是ArrayList.Vector和LinkedList.List用于存放多个元素,能够维护元素的次序,并且允许元素的重复.3个具体 ...

  9. 《Java 8 in Action》Chapter 11:CompletableFuture:组合式异步编程

    某个网站的数据来自Facebook.Twitter和Google,这就需要网站与互联网上的多个Web服务通信.可是,你并不希望因为等待某些服务的响应,阻塞应用程序的运行,浪费数十亿宝贵的CPU时钟周期 ...

  10. OpenJDK 64-Bit Server VM warning: INFO: os::commit_memory(0x00000000c0000000, 1073741824, 0) failed; error='Out of memory' (errno=12)

    使用docker 安装kafka时启动失败 查看报错日志 # docker logs --since 30m 71846a96e514 Excluding KAFKA_HOME from broker ...