tensorboard-sklearn数据-loss
记录sklearn数据训练时的loss值,用tensorboard可视化
三步骤:红字处
import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer # load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y) # 转换格式
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3) def add_layer(inputs, in_size, out_size, layer_name, active_function=None):
"""
:param inputs:
:param in_size: 行
:param out_size: 列 , [行, 列] =矩阵
:param active_function:
:return:
"""
with tf.name_scope('layer'):
with tf.name_scope('weights'):
W = tf.Variable(tf.random_normal([in_size, out_size]), name='W') #
with tf.name_scope('bias'):
b = tf.Variable(tf.zeros([1, out_size]) + 0.1) # b是一行数据,对应out_size列个数据
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.matmul(inputs, W) + b
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob=keep_prob)
if active_function is None:
outputs = Wx_plus_b
else:
outputs = active_function(Wx_plus_b)
tf.summary.histogram(layer_name + '/outputs', outputs) # 1.2.记录outputs值,数据直方图
return outputs # define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32) # 不被dropout的数量
xs = tf.placeholder(tf.float32, [None, 64]) # 8*8
ys = tf.placeholder(tf.float32, [None, 10]) # add output layer
l1 = add_layer(xs, 64, 50, 'l1', active_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', active_function=tf.nn.softmax) # the loss between prediction and really
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
tf.summary.scalar('loss', cross_entropy) # 字符串类型的标量张量,包含一个Summaryprotobuf 1.1记录标量
# training
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all() # 2.把所有summary节点整合在一起,只需run一次,这儿只有cross_entropy
sess.run(tf.initialize_all_variables()) train_writer = tf.summary.FileWriter('log/train', sess.graph) # 3.写入
test_writer = tf.summary.FileWriter('log/test', sess.graph) # start training
for i in range(500):
sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5}) # keep_prob训练时保留50%,防止过拟合
if i % 50 == 0:
# record loss
train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1}) # 3.1 激活 tensorboard记录保留100%的数据
test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i) print("Record Finished !!!")
tensorboard-sklearn数据-loss的更多相关文章
- sklearn数据预处理-scale
对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as ...
- sklearn数据预处理
一.standardization 之所以标准化的原因是,如果数据集中的某个特征的取值不服从标准的正太分布,则性能就会变得很差 ①函数scale提供了快速和简单的方法在单个数组形式的数据集上来执行标准 ...
- 利用tensorboard将数据可视化
注:代码是网上下载的,但是找不到原始出处了,侵权则删 先写出visual类: class TF_visualizer(object): def __init__(self, dimension, ve ...
- sklearn 数据预处理1: StandardScaler
作用:去均值和方差归一化.且是针对每一个特征维度来做的,而不是针对样本. [注:] 并不是所有的标准化都能给estimator带来好处. “Standardization of a dataset i ...
- 数据预处理及sklearn方法实现
1.标准化(中心化) 在许多机器学习执行前,需要对数据集进行标准化处理.因为很对算法假设数据的特征服从标准正态分布.所以如果不对数据标准化,那么算法的效果会很差. 例如,在学习算法的目标函数,都假设数 ...
- Sklearn 预处理数据
## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...
- 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn
https://www.cnblogs.com/31415926535x/p/11001669.html 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn ...
- 学习笔记CB013: TensorFlow、TensorBoard、seq2seq
tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互. tensorflow基本数学运算用法. import tensorflow as tf sess = tf.S ...
- Tensorboard简介
Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后在指定的web端可视化地展现这些信息 ...
随机推荐
- CodeForces - 1087F:Rock-Paper-Scissors Champion(set&数状数组)
n players are going to play a rock-paper-scissors tournament. As you probably know, in a one-on-one ...
- HDU 5178:pairs(二分,lower_bound和upper_bound)
pairs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- CTF-练习平台-Misc之 隐写2
二.隐写2 下载文件后解压,发现是一个png图片,依照老套路查看属性,没有发现 用WinHex打开,在图片文件中,修改图片宽度,将箭头处的A改为F,保存后打开图片 发现flag(对于png的文件格式详 ...
- 网络流--最大流dinic模板
标准的大白书式模板,除了变量名并不一样……在主函数中只需要用到 init 函数.add 函数以及 mf 函数 #include<stdio.h> //差不多要加这么些头文件 #includ ...
- getParameter、getParameterValues、getParameterMap用法详解
首先request中的参数parameter是一个map表,如下例 map={username=[xxx],password=[xxx],hobby=[eat,drink]} (1)当调用getPar ...
- Linux 安装Jdk、mysql、apache、php、tomcat、nginx
Jdk 安装分三步:第一步,上传跟 linux 位数相同的 jdk tar 包,解压:第二步:解压 tar 包,配置环境变量,且 source 一下 /etc/profile:第三步:检查版本 第一步 ...
- 如何调试触发器-MSSQL (转帖)
调试触发器 //------------------------------------- 作者:四海为圈(原创) //------------------------------------- 1. ...
- !!!!!!!【unittest】unittest需要懂的的技术
https://docs.python.org/2/library/unittest.html
- 把存储过程SELECT INTO到临时表
在开发过程中,很多时候要把结果集存放到临时表中,常用的方法有两种. 一. SELECT INTO1. 使用select into会自动生成临时表,不需要事先创建12 select * into #te ...
- STL查找序列中处于某一大小范围内的元素个数
还是头条的笔试题(咦?),问题最后转换成这样的形式: 输入:不包含重复元素的有序数组a[N]以及上下界low, high; 输出:数组a[N]中满足元素处于闭区间[low,high]内(即low &l ...