记录sklearn数据训练时的loss值,用tensorboard可视化

三步骤:红字处

import tensorflow as tf
from sklearn.datasets import load_digits
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelBinarizer # load data
digits = load_digits()
X = digits.data
y = digits.target
y = LabelBinarizer().fit_transform(y) # 转换格式
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.3) def add_layer(inputs, in_size, out_size, layer_name, active_function=None):
"""
:param inputs:
:param in_size: 行
:param out_size: 列 , [行, 列] =矩阵
:param active_function:
:return:
"""
with tf.name_scope('layer'):
with tf.name_scope('weights'):
W = tf.Variable(tf.random_normal([in_size, out_size]), name='W') #
with tf.name_scope('bias'):
b = tf.Variable(tf.zeros([1, out_size]) + 0.1) # b是一行数据,对应out_size列个数据
with tf.name_scope('Wx_plus_b'):
Wx_plus_b = tf.matmul(inputs, W) + b
Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob=keep_prob)
if active_function is None:
outputs = Wx_plus_b
else:
outputs = active_function(Wx_plus_b)
tf.summary.histogram(layer_name + '/outputs', outputs) # 1.2.记录outputs值,数据直方图
return outputs # define placeholder for inputs to network
keep_prob = tf.placeholder(tf.float32) # 不被dropout的数量
xs = tf.placeholder(tf.float32, [None, 64]) # 8*8
ys = tf.placeholder(tf.float32, [None, 10]) # add output layer
l1 = add_layer(xs, 64, 50, 'l1', active_function=tf.nn.tanh)
prediction = add_layer(l1, 50, 10, 'l2', active_function=tf.nn.softmax) # the loss between prediction and really
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction), reduction_indices=[1]))
tf.summary.scalar('loss', cross_entropy) # 字符串类型的标量张量,包含一个Summaryprotobuf 1.1记录标量
# training
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) sess = tf.Session()
merged = tf.summary.merge_all() # 2.把所有summary节点整合在一起,只需run一次,这儿只有cross_entropy
sess.run(tf.initialize_all_variables()) train_writer = tf.summary.FileWriter('log/train', sess.graph) # 3.写入
test_writer = tf.summary.FileWriter('log/test', sess.graph) # start training
for i in range(500):
sess.run(train_step, feed_dict={xs: X_train, ys: y_train, keep_prob: 0.5}) # keep_prob训练时保留50%,防止过拟合
if i % 50 == 0:
# record loss
train_result = sess.run(merged, feed_dict={xs: X_train, ys: y_train, keep_prob: 1}) # 3.1 激活 tensorboard记录保留100%的数据
test_result = sess.run(merged, feed_dict={xs: X_test, ys: y_test, keep_prob: 1})
train_writer.add_summary(train_result, i)
test_writer.add_summary(test_result, i) print("Record Finished !!!")

tensorboard-sklearn数据-loss的更多相关文章

  1. sklearn数据预处理-scale

    对数据按列属性进行scale处理后,每列的数据均值变成0,标准差变为1.可通过下面的例子加深理解: from sklearn import preprocessing import numpy as ...

  2. sklearn数据预处理

    一.standardization 之所以标准化的原因是,如果数据集中的某个特征的取值不服从标准的正太分布,则性能就会变得很差 ①函数scale提供了快速和简单的方法在单个数组形式的数据集上来执行标准 ...

  3. 利用tensorboard将数据可视化

    注:代码是网上下载的,但是找不到原始出处了,侵权则删 先写出visual类: class TF_visualizer(object): def __init__(self, dimension, ve ...

  4. sklearn 数据预处理1: StandardScaler

    作用:去均值和方差归一化.且是针对每一个特征维度来做的,而不是针对样本. [注:] 并不是所有的标准化都能给estimator带来好处. “Standardization of a dataset i ...

  5. 数据预处理及sklearn方法实现

    1.标准化(中心化) 在许多机器学习执行前,需要对数据集进行标准化处理.因为很对算法假设数据的特征服从标准正态分布.所以如果不对数据标准化,那么算法的效果会很差. 例如,在学习算法的目标函数,都假设数 ...

  6. Sklearn 预处理数据

    ## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...

  7. 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn

    https://www.cnblogs.com/31415926535x/p/11001669.html 基于卷积神经网络的人脸识别项目_使用Tensorflow-gpu+dilib+sklearn ...

  8. 学习笔记CB013: TensorFlow、TensorBoard、seq2seq

    tensorflow基于图结构深度学习框架,内部通过session实现图和计算内核交互. tensorflow基本数学运算用法. import tensorflow as tf sess = tf.S ...

  9. Tensorboard简介

    Tensorflow官方推出了可视化工具Tensorboard,可以帮助我们实现以上功能,它可以将模型训练过程中的各种数据汇总起来存在自定义的路径与日志文件中,然后在指定的web端可视化地展现这些信息 ...

随机推荐

  1. DS18B20配置

    复位脉冲: 先拉低至少480us,以产生复位脉冲,接着释放4.7k电阻为高,延时15~60us, 进入接收. void DS18B20_Rst(void) { DS18B20_IO_OUT(); // ...

  2. 有向图与无向图的合并操作区别D(递归与并查集)

    有向图的合并,典型问题:通知小弟(信息只能单向传播)https://www.nowcoder.com/acm/contest/76/E 无向图的合并,典型问题:修道路问题 由于无向图只要二者有联系即可 ...

  3. NSDate 时间加减

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/pearlhuzhu/article/details/26227393 NSDate有个类别,例如以下 ...

  4. 系列文章--从零开始学习ASP.NET MVC 1.0

    从零开始学习ASP.NET MVC 1.0 (一) 开天辟地入门篇 从零开始学习 ASP.NET MVC 1.0 (二) 识别URL的Routing组件 从零开始学习 ASP.NET MVC 1.0 ...

  5. pthread中errors.h的代码

    #ifndef __errors_h #define __errors_h #include <unistd.h> #include <errno.h> #include &l ...

  6. 【转】linux下终端命令快捷键

    原文网址:http://daaoao.blog.51cto.com/2329117/554177 linux下使用终端不可避免. 使用终端快捷键,当然会使你如虎添翼.记住他们吧 终端快捷键 tab=补 ...

  7. centos 下nginx源码编译安装

    1.下载nginx 进入nginx官网下载nginx的稳定版本,我下载的是1.10.3. 下载:wget http://nginx.org/download/nginx-1.10.3.tar.gz 解 ...

  8. php设计模式之职责链模式

    <?php /** * @desc php设计模式之职责链模式(责任链模式) 定义:顾名思义,责任链模式为请求创建了一个接收者对象的链.这种模式给予请求的类型,对请求的发送者和接收者进行解耦.这 ...

  9. 【jmeter】jmeter环境搭建

    一. 工具描述 apache jmeter是100%的java桌面应用程序,它被设计用来加载被测试软件功能特性.度量被测试软件的性能.设计jmeter的初衷是测试web应用,后来又扩充了其它的功能.j ...

  10. java 管道流PipedInputStream,PipedInputStream和随机访问文件 RandomAccessFile

    http://blog.csdn.net/zlp1992/article/details/50298195   给个链接自己去看吧.网上资料不是很多,而且自己也不想写了 RandomAccessFil ...