链接:https://www.nowcoder.com/acm/contest/202/F
来源:牛客网

题目描述

平衡二叉树,顾名思义就是一棵“平衡”的二叉树。在这道题中,“平衡”的定义为,对于树中任意一个节点,都满足左右子树的高度差不超过 d. 空树的高度定义为0,单个节点的高度为1,其他情况下树的高度定义为根节点左右子树高度最大值 + 1. 一棵在高度上平衡的树,节点数可能不平衡,因此再定义一棵树的不平衡度为这棵树中所有节点的左右子树的节点数之差的最大值。
给定平衡的定义参数d, 你需要求出所有高度为 n 的平衡树中不平衡度的最大值。

输入描述:

两个整数,n, d.

输出描述:

一个整数:所有高度为 n 的平衡树中不平衡度的最大值。
示例1

输入

4 1

输出

5

思路:显然选择根节点差最大。显然左树是满二叉树。那么要保证右树最小。我们用dp[i]表示深度为i的最小平衡树结点数,一棵树的左右子树深度差d,假如深度为n,那么左树是dp[n - 1],右树是dp[n - 1 - d]。

代码:

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = + ;
const int seed = ;
const ll MOD = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
ll dp[];
int main(){
ll n, d;
scanf("%lld%lld", &n, &d);
if(n == ){
printf("0\n");
}
else{
for(int i = ; i <= d; i++) dp[i] = i;
for(int i = d + ; i <= n - - d; i++){
dp[i] = dp[i - ] + dp[i - - d] + ;
}
ll l = (1LL << (n - )) - , r = dp[n - - d];
printf("%lld\n", l - r);
}
return ;
}

WannaflyCamp 平衡二叉树(DP)题解的更多相关文章

  1. [JSOI2008]Blue Mary的战役地图——全网唯一一篇dp题解

    全网唯一一篇dp题解 网上貌似全部都是哈希+二分(反正我是大概baidu了翻了翻)(还有人暴力AC了的..) 哈希还是相对于dp还是比较麻烦的. 而且正确性还有可能被卡(当然这个题不会) 而且还容易写 ...

  2. codevs3027线段覆盖2(DP)题解

    题目描述 Description 数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点可以重合)且线段 ...

  3. 洛谷4643:【模板】动态dp——题解

    https://www.luogu.org/problemnew/show/P4643 很妙……让我重新又看了一遍猫锟的WC课件. 推荐一个有markdown神犇题解:https://www.cnbl ...

  4. 记忆的轮廓 期望 四边形不等式dp|题解

    记忆的轮廓 题目描述 通往贤者之塔的路上,有许多的危机.我们可以把这个地形看做是一颗树,根节点编号为1,目标节点编号为n,其中1-n的简单路径上,编号依次递增,在[1,n]中,一共有n个节点.我们把编 ...

  5. cojs 简单的数位DP 题解报告

    首先这道题真的是个数位DP 我们考虑所有的限制: 首先第六个限制和第二个限制是重复的,保留第二个限制即可 第五个限制在转移中可以判断,不用放在状态里 对于第一个限制,我们可以增加一维表示余数即可 对于 ...

  6. POJ 3616 Milking Time DP题解

    典型的给出区间任务和效益值,然后求最大效益值的任务取法. 属于一维DP了. 一维table记录的数据含义:到当前任务的截止时间前的最大效益值是多少. 注意. 这表示当前任务一定要选择,可是终于结果是不 ...

  7. POJ 1163 The Triangle DP题解

    寻找路径,动态规划法题解. 本题和Leetcode的triangle题目几乎相同一样的,本题要求的是找到最大路径和. 逆向思维.从底往上查找起就能够了. 由于从上往下能够扩展到非常多路径.而从下往上个 ...

  8. Kuangbin 带你飞 数位DP题解

    以前一直不知道该咋搞这个比较好. 感觉推起来那个数字好麻烦.后来有一种比较好的写法就是直接的DFS写法.相应的ismax表示当前位是否有限制. 数位DP也是有一种类似模版的东西,不过需要好好理解.与其 ...

  9. HDU 1041 Computer Transformation 数学DP题解

    本题假设编程是使用DP思想直接打表就能够了. 假设是找规律就须要数学思维了. 规律就是看这些连续的0是从哪里来的. 我找到的规律是:1经过两次裂变之后就会产生一个00: 00经过两次裂变之后也会产生新 ...

随机推荐

  1. 在django项目中自定义manage命令(转)

    add by zhj 是我增加的注释 原文:http://www.cnblogs.com/holbrook/archive/2012/03/09/2387679.html 我们都用过Django的dj ...

  2. [记录]Visual Studio 插件

    NuGet Resharper Viasfora : 着色 ozcode2 : 调试 dbforge  调试 phptools vsdoc man DebugStudio Alpha Producti ...

  3. /proc/meminfo

    /proc/meminfo  可以查看自己服务器 物理内存 注意这个文件显示的单位是kB而不是KB,1kB=1000B,但是实际上应该是KB,1KB=1024B 这个显示是不精确的,是一个已知的没有被 ...

  4. 万恶之源 - Python基础数据类型一

    整数 整数在Python中的关键字用int来表示; 整型在计算机中运于计算和比较 在32位机器上int的范围是:  -2**31-2**31-1,即-2147483648-2147483647 在64 ...

  5. mac下多个php版本快速切换的方法

    php是为了快速构建一个web页面而迅速被大家广为接受的开源语言,通过不断发展已经有了很多的php开源系统,满足了目前大部分用户的站点需求.1995年初php诞生到现在已经存在多个版本,并且每个版本都 ...

  6. JS 数组和对象的遍历方式,以及几种方式的比较。

    通常我们会用循环的方式来遍历数组.但是循环是 导致js 性能问题的原因之一.一般我们会采用下几种方式来进行数组的遍历: 方式1: for in 循环: var arr = [1,2,3,4,5]; v ...

  7. tfs项目解绑及svn上传

    1.tfs解绑 file--源代码管理——tfs解绑 2.svn将本地的文件夹上传到server 右击--import--url--新建文件夹

  8. cmd 笔记(随时补充)

    被一篇破解WIFI的标题文骗到了,所以学习一下CMD的命令 1 查看已经连接的wifi和密码 netsh wlan show profiles 回车 netsh wlan show profiles ...

  9. transition和animation区别

    Transform:对元素进行变形: Transition:对元素某个属性或多个属性的变化,进行控制(时间等),类似flash的补间动画.但只有两个关键贞.开始,结束. Animation:对元素某个 ...

  10. hdu 6201 transaction transaction transaction

    https://vjudge.net/contest/184514#problem/H 题意: 一个商人为了赚钱,在城市之间倒卖商品.有n个城市,每个城市之间有且只有一条无向边连通.给出n个城市的货物 ...