基础003_V7-Memory Resources
一、综述
参考ug473.pdf。
常用Memory 资源:


在IP核中,Block memory(distributed memory为CLB中的资源):

通常选用Native,而不用AXI接口:

Block RAM可配置单端口RAM、伪双端口RAM、双端口RAM、单端口ROM、双端口ROM、FIFO。
各个模式调用时可承受的最高频率,参考pg058.pdf:

二、主要功能
学习资源: http://www.asic-world.com/examples/verilog/memories.html

A-RAM/ROM
主要功能:

每一个Block RAM都可配置为1个36Kb的BRAM或1个36Kb的FIFO;同时也可以将其配置为2个单独的18Kb的BRAM或1个18KbBRAM + 1个18Kb的BRAM。
为什么是18k而不是16k(2的整次幂)?因为每8bit一个校验位。2*8 + 2 =18bit。


结论:无论是单端口RAM、伪双端口RAM还是双端口RAM,他们都只有一块Memory。
Single-port RAM:
同步示例:
module ram_sp_sr_sw (
clk , // Clock Input
address , // Address Input
data , // Data bi-directional
cs , // Chip Select
we , // Write Enable/Read Enable
oe // Output Enable
); parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH; //--------------Input Ports-----------------------
input clk ;
input [ADDR_WIDTH-1:0] address ;
input cs ;
input we ;
input oe ; //--------------Inout Ports-----------------------
inout [DATA_WIDTH-1:0] data ; //--------------Internal variables----------------
reg [DATA_WIDTH-1:0] data_out ;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];
reg oe_r; //--------------Code Starts Here------------------ // Tri-State Buffer control
// output : When we = 0, oe = 1, cs = 1
assign data = (cs && oe && !we) ? data_out : 8'bz; // Memory Write Block
// Write Operation : When we = 1, cs = 1
always @ (posedge clk)
begin : MEM_WRITE
if ( cs && we ) begin
mem[address] = data;
end
end // Memory Read Block
// Read Operation : When we = 0, oe = 1, cs = 1
always @ (posedge clk)
begin : MEM_READ
if (cs && !we && oe) begin
data_out = mem[address];
oe_r = 1;
end else begin
oe_r = 0;
end
end endmodule // End of Module ram_sp_sr_sw

异步(异步读、同步写)示例:
module ram_sp_ar_sw (
clk , // Clock Input
address , // Address Input
data , // Data bi-directional
cs , // Chip Select
we , // Write Enable/Read Enable
oe // Output Enable
); parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH; //--------------Input Ports-----------------------
input clk ;
input [ADDR_WIDTH-1:0] address ;
input cs ;
input we ;
input oe ; //--------------Inout Ports-----------------------
inout [DATA_WIDTH-1:0] data ; //--------------Internal variables----------------
reg [DATA_WIDTH-1:0] data_out ;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1]; //--------------Code Starts Here------------------ // Tri-State Buffer control
// output : When we = 0, oe = 1, cs = 1
assign data = (cs && oe && !we) ? data_out : 8'bz; // Memory Write Block
// Write Operation : When we = 1, cs = 1
always @ (posedge clk)
begin : MEM_WRITE
if ( cs && we ) begin
mem[address] = data;
end
end // Memory Read Block
// Read Operation : When we = 0, oe = 1, cs = 1
always @ (address or cs or we or oe)
begin : MEM_READ
if (cs && !we && oe) begin
data_out = mem[address];
end
end endmodule // End of Module ram_sp_ar_sw
对应电路:

可以看出2^8 = 256由4个64拼接拼接而成:

这里其实调用的是CLB中SliceM下的Distributed RAM资源:

B-FIFO
FIFO的能力:

FIFO的IP核使用,具体可参考:pg057.pdf。
FIFO可调用shift reg、distributed RAM、Block RAM、BulitIn FIFO,关于使用,xilinx论坛有相关说法:
Q:
From PG057 (Fifo generator) I understand FIFO's can be implemented in 4 ways, using :
- block RAM
- distributed RAM
- shift register
- built-in FIFO (using FIFO18 / FIFO36)
is there any simple document / app note / overview describing on what basis you typically decide between the 4 implementations. What are the main tradeoffs, advantages, ... of each underlying memory type used?
I can imagine a few, but not sure if these are correct and complete :
- block RAM is interesting for large, deep fifo's
- distributed RAM is interesting for smaller fifo's
- shift register is interesting for smaller fifo's, with short word width
- built-in FIFO allow for the fastest fifo's
but that's just intuition ... so any corrections or further insights are welcome here!
A:
Its based your application , requirement and available resources in your target FPGA. The most of the points you mention correct. I would recommend you to refer target FPGA resource guide LUTs have lowest access time, FIFO18/FIFO36 good timing performance but require effort in design migration, BRAM very good for scalable memory requirement . You can also check about URAM/ultraram available in ultrascale devices
三、IP核调用
A-simple dual RAM
参考IP_bram笔记。
这里涉及到位宽的计算,以6通道,160MHz采样率,12bit有效位AD举例,现在需要转化为:240MHz的FPGA工作时钟。
12bit*6*160/240 = 48bit
位宽由12*6 = 72bit转化为48bit,:
- Port-A为写数据,width:位宽12*6 = 72bit,depth = 160
- Port-B为读数据,width:48bit,depth = 240
但Port-B的width只能是:72bit/(2^n),n = 0, ±1, ±2, ...,因此通常都是二次转化:
Step1:72*160 = 48*240 < x * 240,x = 72*2^n >48,此处n = 0;x工作在240MHz。
Step2:x * M = 48 * N,M、N都是整数。M = 1,N = 2,完成转化。

.png)
勾选primitive output register:

可见该选项延迟了1拍。
B-FIFO
主要参考:

关于IP核参数设置,可参考FIFO generator笔记。
与BRAM同样的例子,很多时候数据时钟域转换用dual-port RAM而不用FIFO,说是前者含地址,存在时延变量取数方便,但改为FIFO实现其实也可以,后者含有计数功能,同样可以进行定位。

从读使能给出,到数据输出,经过6个周期,计算:

基础003_V7-Memory Resources的更多相关文章
- Understanding Virtual Memory
Understanding Virtual Memory by Norm Murray and Neil Horman Introduction Definitions The Life of a P ...
- DTrace to Troubleshoot Java Native Memory Problems
How to Use DTrace to Troubleshoot Java Native Memory Problems on Oracle Solaris 11 Hands-On Labs of ...
- Spring Boot Memory Performance
The Performance Zone is brought to you in partnership with New Relic. Quickly learn how to use Docke ...
- 再谈.net的堆和栈---.NET Memory Management Basics
.NET Memory Management Basics .NET memory management is designed so that the programmer is freed fro ...
- Allowing GPU memory growth
By default, TensorFlow maps nearly all of the GPU memory of all GPUs (subject to CUDA_VISIBLE_DEVICE ...
- CUDA ---- Memory Model
Memory kernel性能高低是不能单纯的从warp的执行上来解释的.比如之前博文涉及到的,将block的维度设置为warp大小的一半会导致load efficiency降低,这个问题无法用war ...
- Memory Leak Detection in C++
原文链接:http://www.linuxjournal.com/article/6556?page=0,0 An earlier article [“Memory Leak Detection in ...
- System and method for parallel execution of memory transactions using multiple memory models, including SSO, TSO, PSO and RMO
A data processor supports the use of multiple memory models by computer programs. At a device extern ...
- Move resources allocated using unmanaged interface to managed devm interface
转载:http://blog.csdn.net/swingboard/article/details/27207497 So today let’s talk about devm functio ...
- Find out when memory leaks are a concern and how to prevent them
Handling memory leaks in Java programs Find out when memory leaks are a concern and how to prevent t ...
随机推荐
- Spring Jdbc事例说明(三)
上一篇文章已经讲解了如何使用Spring搭建工程,这一篇文章是接着上一篇文章来描述的. 一.载入依赖 新增加了两个依赖,mysql数据库驱动和alibaba数据源包 <!-- mysql驱动包 ...
- GoldenGate安装与卸载
软件下载 http://www.oracle.com/technetwork/middleware/goldengate/downloads/index.html 安装 卸载(Using Oracle ...
- 〖Android〗代理与正常网络分开同步CyangenMod源码
为了同步CyanogenMod源代码,你也学会了FQ,对吗? 通常 .repo/manifest.xml 文件有Google AOSP的Project,也有Github的Project: 访问Gith ...
- 【Linux】条件判断eq、ne、gt、lt、ge、le
整数比较: -eq(equal) 相等 -ne(inequality) 不相等 -gt(greater than) 大于 -lt(less than) 小于 -ge(greater equal) 大于 ...
- 6、java5线程池之固定大小线程池newFixedThreadPool
JDK文档说明: 创建一个可重用固定线程数的线程池,以共享的无界队列方式来运行这些线程.在任意点,在大多数 nThreads 线程会处于处理任务的活动状态.如果在所有线程处于活动状态时提交附加任务,则 ...
- excel单元格对齐方式
需要注意下面几点: 1.强制换行,ctrl+回车 2.快速设置缩进,当我们选择需要调整缩进的单元格之后,点击格式---单元格格式---选择水平对齐方式之后,可以选择缩进. 3.注意跨行居中功能,尤其是 ...
- 从JSF看XPages的优点
我们都知道XPages基于JSF,或者可以说XPages是JSF标准的实现(implementation)之一.JSF从2004年的1.0到现在的2.0,已经经历了很大的变化和发展.XPages最初开 ...
- Android控件进阶-自定义流式布局和热门标签控件
技术:Android+java 概述 在日常的app使用中,我们会在android 的app中看见 热门标签等自动换行的流式布局,今天,我们就来看看如何 自定义一个类似热门标签那样的流式布局吧,类 ...
- 利用Git进行团队协作
前言: 这里简单介绍一下Git的历史. 同生活中的许多伟大事件一样,Git 诞生于一个极富纷争大举创新的年代.Linux 内核开源项目有着为数众广的参与者.绝大多数的 Linux 内核维护工作都花在了 ...
- Javascript调试利器console的使用
一.Console API Console.assert() 判断第一个参数是否为真,false的话抛出异常并且在console输出相应信息. Console.count() 以参数为标识记录调用的次 ...