基础003_V7-Memory Resources
一、综述
参考ug473.pdf。
常用Memory 资源:
在IP核中,Block memory(distributed memory为CLB中的资源):
通常选用Native,而不用AXI接口:
Block RAM可配置单端口RAM、伪双端口RAM、双端口RAM、单端口ROM、双端口ROM、FIFO。
各个模式调用时可承受的最高频率,参考pg058.pdf:
二、主要功能
学习资源: http://www.asic-world.com/examples/verilog/memories.html
A-RAM/ROM
主要功能:
每一个Block RAM都可配置为1个36Kb的BRAM或1个36Kb的FIFO;同时也可以将其配置为2个单独的18Kb的BRAM或1个18KbBRAM + 1个18Kb的BRAM。
为什么是18k而不是16k(2的整次幂)?因为每8bit一个校验位。2*8 + 2 =18bit。
结论:无论是单端口RAM、伪双端口RAM还是双端口RAM,他们都只有一块Memory。
Single-port RAM:
同步示例:
module ram_sp_sr_sw (
clk , // Clock Input
address , // Address Input
data , // Data bi-directional
cs , // Chip Select
we , // Write Enable/Read Enable
oe // Output Enable
); parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH; //--------------Input Ports-----------------------
input clk ;
input [ADDR_WIDTH-1:0] address ;
input cs ;
input we ;
input oe ; //--------------Inout Ports-----------------------
inout [DATA_WIDTH-1:0] data ; //--------------Internal variables----------------
reg [DATA_WIDTH-1:0] data_out ;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1];
reg oe_r; //--------------Code Starts Here------------------ // Tri-State Buffer control
// output : When we = 0, oe = 1, cs = 1
assign data = (cs && oe && !we) ? data_out : 8'bz; // Memory Write Block
// Write Operation : When we = 1, cs = 1
always @ (posedge clk)
begin : MEM_WRITE
if ( cs && we ) begin
mem[address] = data;
end
end // Memory Read Block
// Read Operation : When we = 0, oe = 1, cs = 1
always @ (posedge clk)
begin : MEM_READ
if (cs && !we && oe) begin
data_out = mem[address];
oe_r = 1;
end else begin
oe_r = 0;
end
end endmodule // End of Module ram_sp_sr_sw
异步(异步读、同步写)示例:
module ram_sp_ar_sw (
clk , // Clock Input
address , // Address Input
data , // Data bi-directional
cs , // Chip Select
we , // Write Enable/Read Enable
oe // Output Enable
); parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH; //--------------Input Ports-----------------------
input clk ;
input [ADDR_WIDTH-1:0] address ;
input cs ;
input we ;
input oe ; //--------------Inout Ports-----------------------
inout [DATA_WIDTH-1:0] data ; //--------------Internal variables----------------
reg [DATA_WIDTH-1:0] data_out ;
reg [DATA_WIDTH-1:0] mem [0:RAM_DEPTH-1]; //--------------Code Starts Here------------------ // Tri-State Buffer control
// output : When we = 0, oe = 1, cs = 1
assign data = (cs && oe && !we) ? data_out : 8'bz; // Memory Write Block
// Write Operation : When we = 1, cs = 1
always @ (posedge clk)
begin : MEM_WRITE
if ( cs && we ) begin
mem[address] = data;
end
end // Memory Read Block
// Read Operation : When we = 0, oe = 1, cs = 1
always @ (address or cs or we or oe)
begin : MEM_READ
if (cs && !we && oe) begin
data_out = mem[address];
end
end endmodule // End of Module ram_sp_ar_sw
对应电路:
可以看出2^8 = 256由4个64拼接拼接而成:
这里其实调用的是CLB中SliceM下的Distributed RAM资源:
B-FIFO
FIFO的能力:
FIFO的IP核使用,具体可参考:pg057.pdf。
FIFO可调用shift reg、distributed RAM、Block RAM、BulitIn FIFO,关于使用,xilinx论坛有相关说法:
Q:
From PG057 (Fifo generator) I understand FIFO's can be implemented in 4 ways, using :
- block RAM
- distributed RAM
- shift register
- built-in FIFO (using FIFO18 / FIFO36)
is there any simple document / app note / overview describing on what basis you typically decide between the 4 implementations. What are the main tradeoffs, advantages, ... of each underlying memory type used?
I can imagine a few, but not sure if these are correct and complete :
- block RAM is interesting for large, deep fifo's
- distributed RAM is interesting for smaller fifo's
- shift register is interesting for smaller fifo's, with short word width
- built-in FIFO allow for the fastest fifo's
but that's just intuition ... so any corrections or further insights are welcome here!
A:
Its based your application , requirement and available resources in your target FPGA. The most of the points you mention correct. I would recommend you to refer target FPGA resource guide LUTs have lowest access time, FIFO18/FIFO36 good timing performance but require effort in design migration, BRAM very good for scalable memory requirement . You can also check about URAM/ultraram available in ultrascale devices
三、IP核调用
A-simple dual RAM
参考IP_bram笔记。
这里涉及到位宽的计算,以6通道,160MHz采样率,12bit有效位AD举例,现在需要转化为:240MHz的FPGA工作时钟。
12bit*6*160/240 = 48bit
位宽由12*6 = 72bit转化为48bit,:
- Port-A为写数据,width:位宽12*6 = 72bit,depth = 160
- Port-B为读数据,width:48bit,depth = 240
但Port-B的width只能是:72bit/(2^n),n = 0, ±1, ±2, ...,因此通常都是二次转化:
Step1:72*160 = 48*240 < x * 240,x = 72*2^n >48,此处n = 0;x工作在240MHz。
Step2:x * M = 48 * N,M、N都是整数。M = 1,N = 2,完成转化。

.png)

勾选primitive output register:
可见该选项延迟了1拍。
B-FIFO
主要参考:
关于IP核参数设置,可参考FIFO generator笔记。
与BRAM同样的例子,很多时候数据时钟域转换用dual-port RAM而不用FIFO,说是前者含地址,存在时延变量取数方便,但改为FIFO实现其实也可以,后者含有计数功能,同样可以进行定位。
从读使能给出,到数据输出,经过6个周期,计算:
基础003_V7-Memory Resources的更多相关文章
- Understanding Virtual Memory
Understanding Virtual Memory by Norm Murray and Neil Horman Introduction Definitions The Life of a P ...
- DTrace to Troubleshoot Java Native Memory Problems
How to Use DTrace to Troubleshoot Java Native Memory Problems on Oracle Solaris 11 Hands-On Labs of ...
- Spring Boot Memory Performance
The Performance Zone is brought to you in partnership with New Relic. Quickly learn how to use Docke ...
- 再谈.net的堆和栈---.NET Memory Management Basics
.NET Memory Management Basics .NET memory management is designed so that the programmer is freed fro ...
- Allowing GPU memory growth
By default, TensorFlow maps nearly all of the GPU memory of all GPUs (subject to CUDA_VISIBLE_DEVICE ...
- CUDA ---- Memory Model
Memory kernel性能高低是不能单纯的从warp的执行上来解释的.比如之前博文涉及到的,将block的维度设置为warp大小的一半会导致load efficiency降低,这个问题无法用war ...
- Memory Leak Detection in C++
原文链接:http://www.linuxjournal.com/article/6556?page=0,0 An earlier article [“Memory Leak Detection in ...
- System and method for parallel execution of memory transactions using multiple memory models, including SSO, TSO, PSO and RMO
A data processor supports the use of multiple memory models by computer programs. At a device extern ...
- Move resources allocated using unmanaged interface to managed devm interface
转载:http://blog.csdn.net/swingboard/article/details/27207497 So today let’s talk about devm functio ...
- Find out when memory leaks are a concern and how to prevent them
Handling memory leaks in Java programs Find out when memory leaks are a concern and how to prevent t ...
随机推荐
- mysql安装后服务启动不了
1.1 前言 最近真的是倒霉到家,装个mysql都能把所有的问题给问候了一遍······不过这也是一个宝贵的经验,得好好总结下,毕竟也不知道以后会不会再次遇到.如果有网友也能像我这样倒霉,但是能够幸运 ...
- 获取请求真实ip
/** * Copyright (c) 2011-2014, James Zhan 詹波 (jfinal@126.com). * * Licensed under the Apache License ...
- 如何解析android访问webservice返回的SoapObject数据(可用)
怎么解析android访问webservice返回的SoapObject数据 本帖最后由 kkDragon123 于 2013-03-26 15:50:07 编辑 我的数据如下:mingdanResp ...
- 来自Unix/Linux的编程启发录
本篇文章已授权微信公众号 guolin_blog (郭霖)独家公布重点内容 2017年第一篇文章,祝各位好友新年快乐. 年前因为不小心坐到了自己左手大拇指导致轻微的骨裂,没有按时更新,实在是羞愧.今年 ...
- java sm3加密算法
java sm3加密算法实现 CreationTime--2018年7月13日09点28分 Author:Marydon 1.准备工作 所需jar包: bcprov-jdk15on-1.59.ja ...
- soapui not supported the auto complete
http://forum.soapui.org/viewtopic.php?t=19850 syntax highlighting or content assist inside soapUI? t ...
- 9、redis之事务2-Jedis的八种调用方式(事务、管道、分布式)介绍
1.普通同步 @Test public void test1Normal() { Jedis jedis = new Jedis("localhost"); long start ...
- python3 数据库查询
#xiaodeng #python 3 #数据库查询 #第一种方法(fethall,返回所有行数据) import pymysql #connect链接服务器,注意和服务库编码一致 conn=pymy ...
- python之模块distutils,打包工具
# -*- coding: utf-8 -*- #python 27 #xiaodeng #python之模块distutils,打包工具 import distutils #distutils包有2 ...
- Linux软硬连接
曾经对软硬连接一直搞不明白,关键是怕操作错误. 硬链接不能跨区实现连接,硬链接是对原始文件的镜像,同一个inode,软连接是快捷方式,inode保存的是快捷方式的.原始文件删除,导致软连接文件无效. ...