取模本身的性质:(之前有一篇博客写过)三则运算(+,-,*)过程中的取模与最后的取模一样(前提是最后不超long long(或int) 范围,所以为防止超范围,直接对三则运算中的过程取模)

然后就是ACM中的要求取模,,,,即要求如果结果超过某个值就以某值取模,,,,这种题目只要是+,-,* 就直接对过程进行取模即可,如果在运算过程第一步就可能超过long long ,就必须在运算之前进行取模!!!!,,,基本就是三则运算下的取模--->无脑取,,,运算前取+过程中取+结果取,但有时运算前取会Wa,这时去掉那一步即可

ACM中的取模的更多相关文章

  1. Python中的取模运算

    C++中的取模运算符%只能对整数使用(如果要对浮点数使用需要fmod),Python则不同,对整数或浮点数均有效. 在这里再介绍一下取模的定义:假设a,b两个数,那么a mod b = a - n*b ...

  2. java中的%取模

    在java中的  %  实际上是取余. 下面为数学概念上的取余和取模: 对于整型数a,b来说,取模运算或者求余运算的方法都是: 1.求 整数商: c = a/b; 2.计算模或者余数: r = a - ...

  3. PHP中关于取模运算及符号

    执行程序段<?php  echo 8%(-2) ?>,输出结果是: %为取模运算,以上程序将输出0 $a%$b,其结果的正负取决于$a的符号. echo ((-8)%3);     //将 ...

  4. 【转】取模(mod)与取余(rem)的区别——Matlab学习笔记

    昨天在学习Matlab的数学函数时,教程中提到取模(mod)与取余(rem)是不同的,今天在网上具体查了一下: 通常取模运算也叫取余运算,它们返回结果都是余数.rem和mod唯一的区别在于:    当 ...

  5. hdu 3037 费马小定理+逆元除法取模+Lucas定理

    组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...

  6. doT.js实现混合布局,判断,数组,函数使用,取模,数组嵌套

    doT.js实现混合布局 数据结构 { "status": "1", "msg": "获取成功", "info ...

  7. 组合数取模及Lucas定理

    引入: 组合数C(m,n)表示在m个不同的元素中取出n个元素(不要求有序),产生的方案数.定义式:C(m,n)=m!/(n!*(m-n)!)(并不会使用LaTex QAQ). 根据题目中对组合数的需要 ...

  8. 快速幂取模 分类: ACM TYPE 2014-08-29 22:01 95人阅读 评论(0) 收藏

    #include<stdio.h> #include<stdlib.h> //快速幂算法,数论二分 long long powermod(int a,int b, int c) ...

  9. java中求余%与取模floorMod的区别

    初学java的时候接触的%这个符号 百分号? 求余? 取模? 我只知道不是百分号,好像是求余,听别人那叫求模运算符,跟求余一样,于是我便信了. 思考之后开始迷糊,然后经过多次考证得到以下结论. 首先, ...

随机推荐

  1. tryparse

    [C#笔札]Tryparse的用法   这是参考读物的上得一个例子.自己仿照做的作业 private void button1_Click(object sender, EventArgs e) { ...

  2. Sidekiq(部分基础,有几个使用案例和active_job的用法)

    Sidekiq (8700✨) git :  https://github.com/mperham/sidekiq https://www.cnblogs.com/richard1234/p/3829 ...

  3. Travelling Salesman and Special Numbers CodeForces - 914C (数位dp)

    大意: 对于一个数$x$, 每次操作可将$x$变为$x$二进制中1的个数 定义经过k次操作变为1的数为好数, 求$[1,n]$中有多少个好数 注意到n二进制位最大1000位, 经过一次操作后一定变为1 ...

  4. OAF中trunc函数的使用(转)

    原文地址:OAF中trunc函数的使用 需求:在做OAF开发时,经常会需要查询功能,由于需求的不同,往往不能使用OAF标准的查询功能,需要自己客户化实现查询功能,而在查询功能中,经常会遇到查询的时间范 ...

  5. Note: further occurrences of HTTP header parsing errors will be logged at DEBUG level

    2018-03-23 18:32:21,690 [INFO] [http-nio-11007-exec-2] org.apache.coyote.http11.Http11Processor [Dir ...

  6. SQL触发器实例(下)

    基本语法: Create Trigger [TriggerName] ON [TableName] FOR [Insert][,Delete][,Update] AS --触发器要执行的操作语句. G ...

  7. forget word out2

      1★ dictionary / dik ʃ ən əri   dict   2★ fy => faction f æk ʃ ən 派别  

  8. Win32.com安装

    Win32.com安装     http://sourceforge.net/projects/pywin32/files/pywin32     

  9. HTTP使用 multipart/form-data 上传多个字段(包括文件字节流 octet-stream)

    自己用到的一个向服务器上传多个字段的实例,代码不全,仅做参考. 用的是WinINet,上传的字段中包括文件字节流 /* PHttpRequest中自行组装body之后,HttpSendRequest中 ...

  10. apache-service的使用

    apache service目录设置 设置Apache HTTP Server的文件根目录(DocumentRoot) 安装Apache 时,系统会给定一个缺省的文件根目录 如果你觉得这个网页存在这个 ...