卷积操作是使用一个二维卷积核在在批处理的图片中进行扫描,具体的操作是在每一张图片上采用合适的窗口大小在图片的每一个通道上进行扫描。

权衡因素:在不同的通道和不同的卷积核之间进行权衡

在tensorflow中的函数为例:

  • conv2d: 任意的卷积核,能同时在不同的通道上面进行卷积操作。
  卷积核的卷积过程是按照 strides 参数来确定的,比如 strides = [1, 1, 1, 1] 表示卷积核对每个像素点进行卷积,即在二维屏幕上面,两个轴方向的步长都是1。strides = [1, 2, 2, 1] 表示卷积核对每隔一个像素点进行卷积,即在二维屏幕上面,两个轴方向的步长都是2

  卷积操作的空间含义定义如下:如果输入数据是一个四维的 input ,数据维度是 [batch, in_height, in_width, ...],卷积核也是一个四维的卷积核,数据维度是 [filter_height, filter_width, ...]

  函数:tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
  这个函数的作用是对一个四维的输入数据 input 和四维的卷积核 filter 进行操作,然后对输入数据进行一个二维的卷积操作,最后得到卷积之后的结果。
  给定的输入张量的维度是 [batch, in_height, in_width, in_channels] ,卷积核张量的维度是 [filter_height, filter_width, in_channels, out_channels]
  注意,必须有 strides[0] = strides[3] = 1。在大部分处理过程中,卷积核的水平移动步数和垂直移动步数是相同的,即 strides = [1, stride, stride, 1]
 
实例代码:
 input_data = tf.Variable(np.random.rand(10, 6, 6, 3), dtype= np.float32)
filter_data = tf.Variable(np.random.rand(2, 2, 3, 1), dtype= np.float32)
y = tf.nn.conv2d(input_data, filter_data, strides =[1,1,1,1], padding='VALID')
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
a = sess.run(y)
print (a)
print (tf.shape(a))
输出:padding='VALID'
维度是(10,5,5,1),计算方法:6-2+1=5

[ 2.3715086 ]
[ 3.50508738]
[ 3.82352686]
[ 3.2169013 ]
[ 2.59157968]]]]

。。。

Tensor("Shape_14:0", shape=(4,), dtype=int32)
 
 input_data = tf.Variable(np.random.rand(10, 6, 6, 3), dtype= np.float32)
filter_data = tf.Variable(np.random.rand(2, 2, 3, 1), dtype= np.float32)
y = tf.nn.conv2d(input_data, filter_data, strides =[1,1,1,1], padding='SAME')
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
a = sess.run(y)
print (a)
print (tf.shape(a))

输出:padding='SAME'

维度是(10,6,6,1)

[ 1.61058581]
[ 1.08910465]
[ 1.18494463]
[ 1.89793181]
[ 1.41800678]
[ 0.32431859]]]]

。。。

Tensor("Shape_15:0", shape=(4,), dtype=int32)

 
摘自:http://www.jianshu.com/p/e3a79eac554f

CNN中的卷积理解和实例的更多相关文章

  1. (原)CNN中的卷积、1x1卷积及在pytorch中的验证

    转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn ...

  2. CNN中各类卷积总结:残差、shuffle、空洞卷积、变形卷积核、可分离卷积等

    CNN从2012年的AlexNet发展至今,科学家们发明出各种各样的CNN模型,一个比一个深,一个比一个准确,一个比一个轻量.我下面会对近几年一些具有变革性的工作进行简单盘点,从这些充满革新性的工作中 ...

  3. [转]CNN 中千奇百怪的卷积方式大汇总

    https://www.leiphone.com/news/201709/AzBc9Sg44fs57hyY.html 推荐另一篇很好的总结:变形卷积核.可分离卷积?卷积神经网络中十大拍案叫绝的操作. ...

  4. CNN中千奇百怪的卷积方式大汇总

    1.原始版本 最早的卷积方式还没有任何骚套路,那就也没什么好说的了. 见下图,原始的conv操作可以看做一个2D版本的无隐层神经网络. 附上一个卷积详细流程: [TensorFlow]tf.nn.co ...

  5. CNN中的卷积操作的参数数计算

    之前一直以为卷积是二维的操作,而到今天才发现卷积其实是在volume上的卷积.比如输入的数据是channels*height*width(3*10*10),我们定义一个核函数大小为3*3,则输出是8* ...

  6. CNN中感受野的理解

    本文摘自看完还不懂卷积神经网络“感受野”?那你来找我 作者:程序_小白链接:https://www.jianshu.com/p/9305d31962d8 一.到底什么是“感受野”(接受野Recepti ...

  7. java中快速排序的理解以及实例

    所谓的快速排序的思想就是,首先把数组的第一个数拿出来做为一个key,在前后分别设置一个i,j做为标识,然后拿这个key对这个数组从后面往前遍历,及j--,直到找到第一个小于这个key的那个数,然后交换 ...

  8. (转)关于CNN中平移不变性的理解

    https://www.quora.com/Why-and-how-are-convolutional-neural-networks-translation-invariant https://st ...

  9. CNN中1x1 卷积的处理过程及作用

    参看:https://blog.csdn.net/ybdesire/article/details/80314925

随机推荐

  1. SpringMVC由浅入深day01_4DispatcherSerlvet.properties

    4 DispatcherSerlvet.properties DispathcerServlet作为springmvc的中央调度器存在,DispatcherServlet创建时会默认从Dispatch ...

  2. 8 -- 深入使用Spring -- 7...3 让Spring管理控制器

    8.7.3 让Spring管理控制器 让Spring容器来管理应用中的控制器,可以充分利用Spring的IoC特性,但需要将配置Struts 2 的控制器部署在Spring容器中,因此导致配置文件冗余 ...

  3. MySQL---循环语句

    mysql 操作同样有循环语句操作,网上说有3中标准的循环方式: while 循环 . loop 循环和repeat循环.还有一种非标准的循环: goto. 鉴于goto 语句的跳跃性会造成使用的的思 ...

  4. NetBpm 示例:请假审批(6)

    转载注明出处: http://www.cnblogs.com/anbylau2130/p/3877983.html 原文: 请假示例 流程定义包源码下载(注:par包就是zip格式压缩包).原文地址: ...

  5. Extjs定义的Fckeditor控件

    Ext.namespace('CRM.Panels'); //Ext.BoxComponent 这里继承是参考的Ext.form.Field CRM.Panels.Fckeditor = Ext.ex ...

  6. Python easyGUI 文件对比 覆盖保存

    #在35-3的基础上进行优化,当用户点击ok按钮的时候,对打开的文件进行检查是否修改.# 如果修改过,则提示覆盖保存.放弃保存.另存为并实现相应的功能 1 import easygui as g im ...

  7. linux下jdk简单配置记录

    记录哈,搭建环境的时候,copy使用方便. vim /etc/profile export JAVA_HOME=/usr/java/jdk1.7.0_79export PATH=$JAVA_HOME/ ...

  8. session会话保持

    #coding=utf-8 from flask import Flask from flask import request from flask import redirect from flas ...

  9. C++ template —— 模板基础(一)

    <C++ Template>对Template各个方面进行了较为深度详细的解析,故而本系列博客按书本的各章顺序编排,并只作为简单的读书笔记,详细讲解请购买原版书籍(绝对物超所值).---- ...

  10. WINDOWS消息和窗口简介

    一.WINDOWS的消息和窗口简介:1.什么是windows在这里我就不介绍了,但是作为一个程序员我们要知道WINDOWS最重要的一个也是我们程序员常用的一个东西就是消息.窗口是以消息的形式输入的,窗 ...