它与K-mean算法原理上是类似的;

K-mean 算法:

(之前写过:http://www.cnblogs.com/yinheyi/p/6132362.html

对于初始化的类别中心,可以看作初化的字典(每一列为一个类别中心); 而每一样本的表示可以用一个稀疏向量表示(此向量只有对应的类别为1,其余为0)

K-svd算法:

http://blog.csdn.net/garrison2012/article/details/48135619

http://blog.csdn.net/abcjennifer/article/details/8693342

http://blog.csdn.net/abcjennifer/article/details/8693342

K-SVD是一种经典的字典训练算法,依据误差最小原则,对误差项进行SVD分解,选择使误差最小的分解项作为更新的字典原子和对应的原子系数,经过不断的迭代从而得到优化的解。

具体可以看看参考文献;

总结一句话:当更新字典中的一个原子时,把该原子对误差的贡献清零,然后对剩余的误差矩阵进行SVD分解(原因是SVD分解可以把最影响该矩阵的向量找出来,可以说成参量沿主轴的分布,  与主成分分析的原理差不多);

对于k-SVD算法,里面还有一些小细节注意,直接看参考文献吧;

这里有OMP与K-SVD的工具箱;

http://www.cs.technion.ac.il/~ronrubin/software.html

很好很好的,帮助文档也很好,很详细;

K-SVD算法的更多相关文章

  1. 【机器学习】k近邻算法(kNN)

    一.写在前面 本系列是对之前机器学习笔记的一个总结,这里只针对最基础的经典机器学习算法,对其本身的要点进行笔记总结,具体到算法的详细过程可以参见其他参考资料和书籍,这里顺便推荐一下Machine Le ...

  2. 机器学习实战笔记--k近邻算法

    #encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...

  3. 《机器学习实战》学习笔记一K邻近算法

     一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...

  4. [Machine-Learning] K临近算法-简单例子

    k-临近算法 算法步骤 k 临近算法的伪代码,对位置类别属性的数据集中的每个点依次执行以下操作: 计算已知类别数据集中的每个点与当前点之间的距离: 按照距离递增次序排序: 选取与当前点距离最小的k个点 ...

  5. k近邻算法的Java实现

    k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系.输入没有标签的新数据之后, ...

  6. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  7. 聚类算法:K-means 算法(k均值算法)

    k-means算法:      第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...

  8. 从K近邻算法谈到KD树、SIFT+BBF算法

    转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...

  9. Python实现kNN(k邻近算法)

    Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...

  10. 机器学习之K近邻算法(KNN)

    机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...

随机推荐

  1. mongodb更新数组中的所有匹配项

    假如集合中有如下数据 { "_id" : ObjectId("4b97e62bf1d8c7152c9ccb74"), "title" : & ...

  2. FFmpeg(11)-基于FFmpeg进行音频重采样(swr_init(), swr_convert())

    一.包含头文件和库文件 修改CMakeLists # swresample add_library(swresample SHARED IMPORTED) set_target_properties( ...

  3. JAVA Zero Copy的相关知识【转】

    转自:https://my.oschina.net/cloudcoder/blog/299944 摘要: java 的zero copy多在网络应用程序中使用.Java的libaries在linux和 ...

  4. QQ通信原理及QQ是怎么穿透内网进行通信的?

    http://blog.csdn.net/frank_good/article/details/51160027 ******************************************* ...

  5. SVN如何切换账号

    https://www.cnblogs.com/six-moon/p/5233878.html **************************************************** ...

  6. 如何使cmd窗口正确显示utf-8编码的文字

    http://blog.csdn.net/ehcoing/article/details/51865922 ********************************************** ...

  7. 比较正确的 iPhone7/7+ 的进入DFU的方法是这样的

    正确的.没有歧义的.在WIndows7系统下进入DFU并刷机的方法是: 1)PC端打开iTunes,数据线连接iPhone7与PC: 2)iPhone7关机: 3)同时按下电源键和音量减键,LOGO会 ...

  8. 如何在 Django 中保证并发的数据一致性

    1. 关于锁 1.1 乐观锁 乐观锁的出发点是,同一条数据很少会因为并发修改而产生冲突,适用于读多写少的场景,用以提高吞吐量. 实现方式,读取一个字段,执行处理逻辑,当需要更新数据时,再次检查该字段是 ...

  9. 【神经网络】BP反向传播神经网络

    BP算法细节 参数说明:假设有n层.J表示代价函数,和上面的E是同样的意思,只不过用不同的字母写而已. 分析:要想知道第l层的第i个结点的残差,必须知道层已经计算出来了残差,你只要把后面一层的每个结点 ...

  10. Python3下requests库发送multipart/form-data类型请求

    [本文出自天外归云的博客园] 要模拟multipart/form-data类型请求,可以用python3的requests库完成.代码示例如下: #请求的接口url url = "url&q ...