Connections between cities

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Problem Description
After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
 
Input
Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
 
Output
For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
 
Sample Input
5 3 2
1 3 2
2 4 3
5 2 3
1 4
4 5
 
Sample Output
Not connected
6

Hint

Hint

Huge input, scanf recommended.

 
Source
思路:利用并查集判断是否联通,因为可能不联通,所以可能哟偶多颗树,多次dfs,然后就是模版
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#define true ture
#define false flase
using namespace std;
#define ll long long
#define inf 0xfffffff
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
#define maxn 100010
#define M 22
int father[maxn];
struct is
{
int v,next,w;
} edge[maxn*];
int deep[maxn],jiedge;
int dis[maxn];
int head[maxn];
int fa[maxn][M];
int findd(int x)
{
return x==father[x]?x:father[x]=findd(father[x]);
}
int hebing(int u,int v)
{
int x=findd(u);
int y=findd(v);
if(x!=y)
father[x]=y;
}
void add(int u,int v,int w)
{
jiedge++;
edge[jiedge].v=v;
edge[jiedge].w=w;
edge[jiedge].next=head[u];
head[u]=jiedge;
}
void dfs(int u)
{
for(int i=head[u]; i; i=edge[i].next)
{
int v=edge[i].v;
int w=edge[i].w;
if(!deep[v])
{
dis[v]=dis[u]+edge[i].w;
deep[v]=deep[u]+;
fa[v][]=u;
dfs(v);
}
}
}
void st(int n)
{
for(int j=; j<M; j++)
for(int i=; i<=n; i++)
fa[i][j]=fa[fa[i][j-]][j-];
}
int LCA(int u , int v)
{
if(deep[u] < deep[v]) swap(u , v) ;
int d = deep[u] - deep[v] ;
int i ;
for(i = ; i < M ; i ++)
{
if( ( << i) & d ) // 注意此处,动手模拟一下,就会明白的
{
u = fa[u][i] ;
}
}
if(u == v) return u ;
for(i = M - ; i >= ; i --)
{
if(fa[u][i] != fa[v][i])
{
u = fa[u][i] ;
v = fa[v][i] ;
}
}
u = fa[u][] ;
return u ;
}
void init(int n)
{
for(int i=;i<=n;i++)
father[i]=i;
memset(head,,sizeof(head));
memset(fa,,sizeof(fa));
memset(deep,,sizeof(deep));
jiedge=;
}
int main()
{
int x,n,t;
while(~scanf("%d%d%d",&n,&x,&t))
{
init(n);
for(int i=; i<x; i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
hebing(u,v);
}
for(int i=;i<=n;i++)
if(!deep[i])
{
deep[i]=;
dis[i]=;
dfs(i);
}
st(n);
while(t--)
{
int a,b;
scanf("%d%d",&a,&b);
if(findd(a)!=findd(b))
printf("Not connected\n");
else
printf("%d\n",dis[a]-*dis[LCA(a,b)]+dis[b]);
}
}
return ;
}

hdu 2874 Connections between cities 带权lca判是否联通的更多相关文章

  1. hdu 2874 Connections between cities(st&rmq LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  2. hdu 2874 Connections between cities [LCA] (lca->rmq)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  3. HDU 2874 Connections between cities(LCA Tarjan)

    Connections between cities [题目链接]Connections between cities [题目类型]LCA Tarjan &题意: 输入一个森林,总节点不超过N ...

  4. hdu 2874 Connections between cities (并查集+LCA)

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  5. HDU 2874 Connections between cities(LCA)

    题目链接 Connections between cities LCA的模板题啦. #include <bits/stdc++.h> using namespace std; #defin ...

  6. HDU——2874 Connections between cities

    Connections between cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (J ...

  7. HDU 2874 Connections between cities (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意是给你n个点,m条边(无向),q个询问.接下来m行,每行两个点一个边权,而且这个图不能有环路 ...

  8. HDU 2874 Connections between cities(LCA离线算法实现)

    http://acm.hdu.edu.cn/showproblem.php?pid=2874 题意: 求两个城市之间的距离. 思路: LCA题,注意原图可能不连通. 如果不了解离线算法的话,可以看我之 ...

  9. HDU 2874 Connections between cities(LCA(离线、在线)求树上距离+森林)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2874 题目大意:给出n个点,m条边,q个询问,每次询问(u,v)的最短距离,若(u,v)不连通即不在同 ...

随机推荐

  1. SparkSQL UDF两种注册方式:udf() 和 register()

    调用sqlContext.udf.register() 此时注册的方法 只能在sql()中可见,对DataFrame API不可见 用法:sqlContext.udf.register("m ...

  2. [py]python内存管理

    Python深入06 Python的内存管理 堆栈内存 - 堆内存 对象一般就是开辟在堆上的结构体: 堆内存用于提供 引用数据类型存储值 对象存储的是属性名和属性值 函数存储的是函数体代码字符串 函数 ...

  3. 深入理解python之二——python列表和元组

    从一开始学习python的时候,很多人就听到的是元组和列表差不多,区别就是元组不可以改变,列表可以改变. 从数据结构来说,这两者都应当属于数组,元组属于静态的数组,而列表属于动态数组.稍后再内存的分配 ...

  4. Java-二分查找算法

    package com.lym.binarySearch; import java.util.Arrays; /** * 二分查找 * * @author Administrator * */ pub ...

  5. linux 启动引导流程

    课程大纲: Linux引导流程 Linux运行级别 Linux启动服务管理 GRUB配置与应用 启动故障分析与解决 系统引导流程 1.固件firmware(CMOS(固化在硬件上的程序与硬件统称)/B ...

  6. php端口号设置和查看

  7. tfs代码上传到server并下载到新位置

    1.svn与git代码管理原理基本一致,基于文档管理,能看到文件代码,通过设置文件的只读属性来控制代码. 而tfs是基于sqlserver及lock来管理,看不见代码文件 2.tfs没有自己的用户管理 ...

  8. “System.Data”中不存在类型或命名空间名称“TypedTableBase”

    错误 1 命名空间“System.Data”中不存在类型或命名空间名称“TypedTableBase”(是否缺少程序集引用?)  解决方案 因为是把强类型DataSet文件绑定报表的项目中出现的错误, ...

  9. ActiveMQ 集群负载平衡

    目前的架构: 负载均衡方案:========================================= 第二种方案呢,假设我们整个应用是个食堂,这个食堂里面有好多饭口,每个饭口有好多大爷大妈( ...

  10. Linux基础命令---zip

    zip zip是一种最通用的文件压缩方式,使用于unix.msdos.windows.OS等系统.如果在编译zip时包含bzip 2库,zip现在也支持bzip 2压缩.当将大于4GB的文件添加到存档 ...