HDU 6070 Dirt Ratio(分数规划+线段树)
http://acm.hdu.edu.cn/showproblem.php?pid=6070
题意:
找出一个区间,使得(区间内不同数的个数/区间长度)的值最小,并输出该值。
思路:
因为是要求$\frac{f(x)}{g(x)}$的最值,所以这是分数规划的题目,对于分数规划,是要用二分查找的方式去解决的。
就像官方题解说的,二分查找mid,二分答案mid,检验是否存在一个区间满足$\frac{size(l,r)}{(r-l+1)}<=mid$,
表示l~r内不同数的个数。
先把上面的式子转化一下,
,用线段树维护区间内不同数的个数,因为l*mid是固定值,所以把它也可以加进去,这样线段树就维护了区间内不等式左边的最小值。
从左到右枚举r,先是在pre[a[r]]+1~r这段区间内将区间值+1,因为这段区间内a[r]并没有出现过。更新完了之后就查询,因为线段树内记录的就是不等式左边的最小值,所以就可以返回最小值然后判断是否小于等于(r+l)*mid。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pll;
const int INF = 0x3f3f3f3f;
const int maxn=1e6+;
const int mod=;
const double eps=1e-; int n;
double now;
int a[maxn];
int pre[maxn];
double add[maxn<<];
double sum[maxn<<]; void PushUp(int o)
{
sum[o]=min(sum[o<<],sum[o<<|]);
} void PushDown(int o)
{
if(add[o])
{
add[o<<]+=add[o];
add[o<<|]+=add[o];
sum[o<<]+=add[o];
sum[o<<|]+=add[o];
add[o]=;
}
} void build(int l, int r, int o)
{
sum[o]=add[o]=;
if(l==r)
{
sum[o]=l*now;
return ;
}
int mid=(l+r)>>;
build(l,mid,o<<);
build(mid+,r,o<<|);
PushUp(o);
} void update(int ql, int qr, int l, int r, int x, int o)
{
if(ql<=l && qr>=r)
{
sum[o]+=x;
add[o]+=x;
return;
}
PushDown(o);
int mid=(l+r)>>;
if(mid>=ql) update(ql,qr,l,mid,x,o<<);
if(mid<qr) update(ql,qr,mid+,r,x,o<<|);
PushUp(o);
} double query(int ql, int qr, int l, int r, int o)
{
if(ql<=l && qr>=r)
{
return sum[o];
}
PushDown(o);
double ans=INF;
int mid=(l+r)>>;
if(mid>=ql) ans=min(ans,query(ql,qr,l,mid,o<<));
if(mid<qr) ans=min(ans,query(ql,qr,mid+,r,o<<|));
return ans;
} bool check()
{
memset(pre,,sizeof(pre));
build(,n,);
for(int i=;i<=n;i++)
{
double tmp=now*(i+1.0);
update(pre[a[i]]+,i,,n,,);
if(query(,i,,n,)<=tmp) return true;
pre[a[i]]=i;
}
return false;
} int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]); double l=,r=;
double ans;
while(r-l>=eps)
{
double mid = (r+l)/2.0;
now = mid;
if(check())
{
ans=mid;
r=mid-eps;
}
else l=mid+eps;
}
printf("%.9lf\n",ans);
}
return ;
}
HDU 6070 Dirt Ratio(分数规划+线段树)的更多相关文章
- HDU 6070 - Dirt Ratio | 2017 Multi-University Training Contest 4
比赛时会错题意+不知道怎么线段树维护分数- - 思路来自题解 /* HDU 6070 - Dirt Ratio [ 二分,线段树 ] | 2017 Multi-University Training ...
- 2017ACM暑期多校联合训练 - Team 4 1004 HDU 6070 Dirt Ratio (线段树)
题目链接 Problem Description In ACM/ICPC contest, the ''Dirt Ratio'' of a team is calculated in the foll ...
- HDU 6070 Dirt Ratio(线段树)
Dirt Ratio Time Limit: 18000/9000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Tot ...
- hdu 6070 Dirt Ratio 线段树+二分
Dirt Ratio Time Limit: 18000/9000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Spe ...
- HDU-6070 Dirt Ratio(二分+线段树+分数规划)
目录 目录 思路: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 目录 题意:传送门 原题目描述在最下面. 求\(sum/len\)最小值.\(sum\)是一段区间内不同数字的 ...
- hdu 6070 Dirt Ratio
题 OvO http://acm.hdu.edu.cn/showproblem.php?pid=6070 (2017 Multi-University Training Contest - Team ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模
Multiply game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Tot ...
- HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)
HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意: 给一个序列由 ...
随机推荐
- Selenium之Css Selector使用方法
什么是Css Selector? Css Selector定位实际就是HTML的Css选择器的标签定位 工具 Css Selector的练习建议使用火狐浏览器,下载插件,FireFinder.Fire ...
- PAT 1028 List Sorting[排序][一般]
1028 List Sorting (25)(25 分) Excel can sort records according to any column. Now you are supposed to ...
- soapUI-DataGen
1.1.1 DataGen 1.1.1.1 概述 – DataGen DataGen TestStep可用于生成要用作TestCases中的输入的数据,例如数字或日期序列,随机选择等.生成的数据可作 ...
- 测试常用的Oracle11G 命令行指令。
测试常用的Oracle11G 命令行指令. ×××××××××××××××× 登录:
- selenium webdriver模拟鼠标键盘操作
在测试使用Selenium webdriver测试WEB系统的时候,用到了模拟鼠标.键盘的一些输入操作. 1.鼠标的左键点击.双击.拖拽.右键点击等: 2.键盘的回车.回退.空格.ctrl.alt.s ...
- 7.11 Models -- Customizing Adapters
一.概述 1. 在Ember Data中,和后台数据存储通信的逻辑存在于Adapter中.Ember Data的有一些内置的假设,一个 REST API 应该怎么看.如果你的后台约定和这些假设不同,E ...
- maven intall在target文件夹中自动生成的war包部署服务器时缺斤少两
1.问题描述,本地改动特别大或者升级系统操作,打war包部署服务器上程序时候,页面或者后台总是报错,原因就是比本地少东西. 2.问题排查解决:maven clean然后maven intall在tar ...
- MySQL Crash Course #10# Chapter 19. Inserting Data
INDEX BAD EXAMPLE Improving Overall Performance Inserting Multiple Rows INSTEAD OF Inserting a Singl ...
- 学写网页 #04# w3school
索引: HTML 输入类型 XHTML HTML5 HTML5 样式指南和代码约定 WHO 成立于 1948 年. 对缩写进行标记能够为浏览器.翻译系统以及搜索引擎提供有用的信息. code 元素不保 ...
- SNMP学习笔记之SNMP报文以及不同版本(SNMPv1、v2c、v3)的区别
本篇文章将重点分析SNMP报文,并对不同版本(SNMPv1.v2c.v3)进行区别! 四.SNMP协议数据单元 在SNMP管理中,管理站(NMS)和代理(Agent)之间交换的管理信息构成了SNMP报 ...