Spark2 Dataset分析函数--排名函数row_number,rank,dense_rank,percent_rank
select gender,
age,
row_number() over(partition by gender order by age) as rowNumber,
rank() over(partition by gender order by age) as ranks,
dense_rank() over(partition by gender order by age) as denseRank,
percent_rank() over(partition by gender order by age) as percentRank
from Affairs
val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate()
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._
val dataList: List[(Double, String, Double, Double, String, Double, Double, Double, Double)] = List(
(0, "male", 37, 10, "no", 3, 18, 7, 4),
(0, "female", 27, 4, "no", 4, 14, 6, 4),
(0, "female", 32, 15, "yes", 1, 12, 1, 4),
(0, "male", 57, 15, "yes", 5, 18, 6, 5),
(0, "male", 22, 0.75, "no", 2, 17, 6, 3),
(0, "female", 32, 1.5, "no", 2, 17, 5, 5),
(0, "female", 22, 0.75, "no", 2, 12, 1, 3),
(0, "male", 57, 15, "yes", 2, 14, 4, 4),
(0, "female", 32, 15, "yes", 4, 16, 1, 2),
(0, "male", 22, 1.5, "no", 4, 14, 4, 5),
(0, "male", 37, 15, "yes", 2, 20, 7, 2),
(0, "male", 27, 4, "yes", 4, 18, 6, 4),
(0, "male", 47, 15, "yes", 5, 17, 6, 4),
(0, "female", 22, 1.5, "no", 2, 17, 5, 4),
(0, "female", 27, 4, "no", 4, 14, 5, 4),
(0, "female", 37, 15, "yes", 1, 17, 5, 5),
(0, "female", 37, 15, "yes", 2, 18, 4, 3),
(0, "female", 22, 0.75, "no", 3, 16, 5, 4),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 2, 14, 1, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 22, 1.5, "no", 2, 16, 5, 5),
(0, "female", 27, 10, "yes", 4, 16, 5, 4),
(0, "female", 32, 10, "yes", 3, 14, 1, 5),
(0, "male", 37, 4, "yes", 2, 20, 6, 4))
val data = dataList.toDF("affairs", "gender", "age", "yearsmarried", "children", "religiousness", "education", "occupation", "rating")
data.printSchema()
// 创建视图
data.createOrReplaceTempView("Affairs")
val s1="row_number() over(partition by gender order by age) as rowNumber,"
val s2="rank() over(partition by gender order by age) as ranks,"
val s3="dense_rank() over(partition by gender order by age) as denseRank,"
val s4="percent_rank() over(partition by gender order by age) as percentRank"
val df8=spark.sql("select gender,age,"+s1+s2+s3+s4+" from Affairs")
df8.show(50)
+------+----+---------+-----+---------+------------------+
|gender| age|rowNumber|ranks|denseRank| percentRank|
+------+----+---------+-----+---------+------------------+
|female|22.0| 1| 1| 1| 0.0|
|female|22.0| 2| 1| 1| 0.0|
|female|22.0| 3| 1| 1| 0.0|
|female|22.0| 4| 1| 1| 0.0|
|female|22.0| 5| 1| 1| 0.0|
|female|22.0| 6| 1| 1| 0.0|
|female|27.0| 7| 7| 2| 0.4|
|female|27.0| 8| 7| 2| 0.4|
|female|27.0| 9| 7| 2| 0.4|
|female|27.0| 10| 7| 2| 0.4|
|female|32.0| 11| 11| 3|0.6666666666666666|
|female|32.0| 12| 11| 3|0.6666666666666666|
|female|32.0| 13| 11| 3|0.6666666666666666|
|female|32.0| 14| 11| 3|0.6666666666666666|
|female|37.0| 15| 15| 4|0.9333333333333333|
|female|37.0| 16| 15| 4|0.9333333333333333|
| male|22.0| 1| 1| 1| 0.0|
| male|22.0| 2| 1| 1| 0.0|
| male|27.0| 3| 3| 2| 0.25|
| male|37.0| 4| 4| 3| 0.375|
| male|37.0| 5| 4| 3| 0.375|
| male|37.0| 6| 4| 3| 0.375|
| male|47.0| 7| 7| 4| 0.75|
| male|57.0| 8| 8| 5| 0.875|
| male|57.0| 9| 8| 5| 0.875|
+------+----+---------+-----+---------+------------------+
Spark2 Dataset分析函数--排名函数row_number,rank,dense_rank,percent_rank的更多相关文章
- SQL Server中排名函数row_number,rank,dense_rank,ntile详解
SQL Server中排名函数row_number,rank,dense_rank,ntile详解 从SQL SERVER2005开始,SQL SERVER新增了四个排名函数,分别如下:1.row_n ...
- 好用的排名函数~ROW_NUMBER(),RANK(),DENSE_RANK() 三兄弟
排名函数三兄弟,一看名字就知道,都是为了排名而生!但是各自有各自的特色!以下一个例子说明问题!(以下栗子没有使用Partition By 的关键字,整个结果集进行排序) RANK 每个值一个排名,同样 ...
- SQL Server:排名函数row_number,rank,dense_rank,ntile详解
1.Row_Number函数 row_number函数大家比较熟悉一些,因为它的用途非常的广泛,我们经常在分页与排序中用到它,它的功能就是在每一行中生成一个连续的不重复的序号 例如: select S ...
- Oracle分析函数/排名函数/位移函数/同比环比
分析函数 作用:分析函数可以在数据中进行分组,然后计算基于组的某种统计值,并且每一组的每一行都可以返回一个统计值.统计函数:MAX(字段名).MIN(字段名).AVG(字段名).SUM(字段名).CO ...
- 知方可补不足~row_number,rank,dense_rank,ntile排名函数的用法
回到目录 这篇文章介绍SQL中4个很有意思的函数,我称它的行标函数,它们是row_number,rank,dense_rank和ntile,下面分别进行介绍. 一 row_number:它为数据表加一 ...
- 大数据学习day29-----spark09-------1. 练习: 统计店铺按月份的销售额和累计到该月的总销售额(SQL, DSL,RDD) 2. 分组topN的实现(row_number(), rank(), dense_rank()方法的区别)3. spark自定义函数-UDF
1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(mone ...
- Hive学习之路 (十四)Hive分析窗口函数(二) NTILE,ROW_NUMBER,RANK,DENSE_RANK
概述 本文中介绍前几个序列函数,NTILE,ROW_NUMBER,RANK,DENSE_RANK,下面会一一解释各自的用途. 注意: 序列函数不支持WINDOW子句.(ROWS BETWEEN) 数据 ...
- ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over()
ROW_NUMBER()/RANK()/DENSE_RANK()/ntile() over() 今天女票问我SqlServer的四种排序,当场写了几句Sql让她了解,现把相关Sql放上来. 首先, ...
- SQL Server - 四种排序, ROW_NUMBER() /RANK() /DENSE_RANK() /ntile() over()
>>>>英文版 (更简洁易懂)<<<< 转载自:https://dzone.com/articles/difference-between-rownum ...
随机推荐
- Strict Mode (JavaScript)
摘要: ECMAScript5中引入的严格模式,通过让JavaScript运行环境对一些开发过程中最常见和不易发现的错误做出和当前不同的处理,来让开发者拥有一个”更好”的JavaScript语言.但目 ...
- [原]unity3D 移动平台崩溃信息收集
http://m.blog.csdn.net/blog/catandrat111/8534287http://m.blog.csdn.net/blog/catandrat111/8534287
- 利用MsChart控件绘制多曲线图表(转载)
在.Net4.0框架中,微软已经将Mschart控件集成了进来,以前一直在web下面用过,原来winform下的Mschart控件更加简单更加方便,今天我们用mschart绘制一个多曲线图,话不多说, ...
- iOS js与objective-c的交互(转)
在写 JavaScript 的时候,可以使用一个叫做 window 的对象,像是我们想要从现在的网页跳到另外一个网页的时候,就会去修改 window.location.href 的位置:在我们的 Ob ...
- ios 查看模拟器路径以及应用的文件夹
模拟器文件查看 好,这个时候选择往模拟器上面调试程序: 运行模拟器: 打开Finder,按住option,在菜单栏中选择“前往”->“资源库” 如果没发现资源库,则使用终端 命令行输入 ope ...
- Nexus5 电信3G保留数据和Root升级Android 6.0
前提: A 备份手机重要数据,安全第一 B 进入twrp recovery 备份EFS,建议最好拷贝到电脑上(如果没有twrp,则需要先刷twrp,具体指令请看下面步骤第10条) C 因为Androi ...
- 8 -- 深入使用Spring -- 1...4 重写占位符配置器
8.1.5 重写占位符配置器 (PropertyOverrideConfigurer) PropertyOverrideConfigurer是Spring提供的另一个容器后处理器.PropertyOv ...
- NetBpm 安装篇(1)
尊重别人劳动成果 转载注明出处:http://www.cnblogs.com/anbylau2130/p/3875718.html 官方主页 http://www.netbpm.org/docs/in ...
- HttpClinet学习笔记
本文为学习httpClient学习过程中转载的文章,若涉及版权请留言. ----------------------------- 前言 超文本传输协议(HTTP)也许是当今互联网上使用的最重要的协议 ...
- NTP服务器时间集群借节点之间同步
1.三个节点时间同步,cdh1,cdh2,cdh3 2.做法:cdh1从网络时间同步,然后cdh2和cdh3从cdh1节点同步 3.安装与自启动设置 yum install ntp 按上面的安装方式在 ...