[LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].

The largest rectangle is shown in the shaded area, which has area = 10 unit.
For example,
Given height = [2,1,5,6,2,3],
return 10.
这道题让求直方图中最大的矩形,刚开始看到求极值问题以为要用DP来做,可是想不出递推式,只得作罢。这道题如果用暴力搜索法估计肯定没法通过OJ,但是我也没想出好的优化方法,在网上搜到了网友水中的鱼的博客,发现他想出了一种很好的优化方法,就是遍历数组,每找到一个局部峰值(只要当前的数字大于后面的一个数字,那么当前数字就看作一个局部峰值,跟前面的数字大小无关),然后向前遍历所有的值,算出共同的矩形面积,每次对比保留最大值。这里再说下为啥要从局部峰值处理,看题目中的例子,局部峰值为 2,6,3,我们只需在这些局部峰值出进行处理,为啥不用在非局部峰值处统计呢,这是因为非局部峰值处的情况,后面的局部峰值都可以包括,比如1和5,由于局部峰值6是高于1和5的,所有1和5能组成的矩形,到6这里都能组成,并且还可以加上6本身的一部分组成更大的矩形,那么就不用费力气去再统计一个1和5处能组成的矩形了。代码如下:
解法一:
// Pruning optimize
class Solution {
public:
int largestRectangleArea(vector<int> &height) {
int res = ;
for (int i = ; i < height.size(); ++i) {
if (i + < height.size() && height[i] <= height[i + ]) {
continue;
}
int minH = height[i];
for (int j = i; j >= ; --j) {
minH = min(minH, height[j]);
int area = minH * (i - j + );
res = max(res, area);
}
}
return res;
}
};
后来又在网上发现一种比较流行的解法,是利用栈来解,可参见网友实验室小纸贴校外版的博客,但是经过仔细研究,其核心思想跟上面那种剪枝的方法有异曲同工之妙,这里维护一个栈,用来保存递增序列,相当于上面那种方法的找局部峰值。我们可以看到,直方图矩形面积要最大的话,需要尽可能的使得连续的矩形多,并且最低一块的高度要高。有点像木桶原理一样,总是最低的那块板子决定桶的装水量。那么既然需要用单调栈来做,首先要考虑到底用递增栈,还是用递减栈来做。我们想啊,递增栈是维护递增的顺序,当遇到小于栈顶元素的数就开始处理,而递减栈正好相反,维护递减的顺序,当遇到大于栈顶元素的数开始处理。那么根据这道题的特点,我们需要按从高板子到低板子的顺序处理,先处理最高的板子,宽度为1,然后再处理旁边矮一些的板子,此时长度为2,因为之前的高板子可组成矮板子的矩形 ,因此我们需要一个递增栈,当遇到大的数字直接进栈,而当遇到小于栈顶元素的数字时,就要取出栈顶元素进行处理了,那取出的顺序就是从高板子到矮板子了,于是乎遇到的较小的数字只是一个触发,表示现在需要开始计算矩形面积了,为了使得最后一块板子也被处理,这里用了个小 trick,在高度数组最后面加上一个0,这样原先的最后一个板子也可以被处理了。由于栈顶元素是矩形的高度,那么关键就是求出来宽度,那么跟之前那道 Trapping Rain Water 一样,单调栈中不能放高度,而是需要放坐标。由于我们先取出栈中最高的板子,那么就可以先算出长度为1的矩形面积了,然后再取下一个板子,此时根据矮板子的高度算长度为2的矩形面积,以此类推,知道数字大于栈顶元素为止,再次进栈,巧妙的一比!关于单调栈问题可以参见博主的一篇总结帖 LeetCode Monotonous Stack Summary 单调栈小结,代码如下:
解法二:
class Solution {
public:
int largestRectangleArea(vector<int> &height) {
int res = ;
stack<int> st;
height.push_back();
for (int i = ; i < height.size(); ++i) {
if (st.empty() || height[st.top()] < height[i]) {
st.push(i);
} else {
int cur = st.top(); st.pop();
res = max(res, height[cur] * (st.empty() ? i : (i - st.top() - )));
--i;
}
}
return res;
}
};
我们可以将上面的方法稍作修改,使其更加简洁一些:
解法三:
class Solution {
public:
int largestRectangleArea(vector<int>& heights) {
int res = ;
stack<int> st;
heights.push_back();
for (int i = ; i < heights.size(); ++i) {
while (!st.empty() && heights[st.top()] >= heights[i]) {
int cur = st.top(); st.pop();
res = max(res, heights[cur] * (st.empty() ? i : (i - st.top() - )));
}
st.push(i);
}
return res;
}
};
类似题目:
参考资料:
https://leetcode.com/problems/largest-rectangle-in-histogram/
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形的更多相关文章
- [LeetCode] 84. Largest Rectangle in Histogram 直方图中最大的矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [leetcode]84. Largest Rectangle in Histogram直方图中的最大矩形
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- LeetCode: Largest Rectangle in Histogram(直方图最大面积)
http://blog.csdn.net/abcbc/article/details/8943485 具体的题目描述为: Given n non-negative integers represent ...
- [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- leetcode Largest Rectangle in Histogram 单调栈
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052343.html 题目链接 leetcode Largest Rectangle in ...
- LeetCode: Largest Rectangle in Histogram 解题报告
Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...
- LeetCode 84. Largest Rectangle in Histogram 直方图里的最大长方形
原题 Given n non-negative integers representing the histogram's bar height where the width of each bar ...
- 【LeetCode】84. Largest Rectangle in Histogram——直方图最大面积
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
- [LeetCode] Largest Rectangle in Histogram 解题思路
Given n non-negative integers representing the histogram's bar height where the width of each bar is ...
随机推荐
- js的单线程和异步
前言 说到js的单线程(single threaded)和异步(asynchronous),很多同学不禁会想,这不是自相矛盾么?其实,单线程和异步确实不能同时成为一个语言的特性.js选择了成为单线程的 ...
- CloudNotes之桌面客户端篇:插件系统的实现
[CloudNotes版本更新历史与各版本下载地址请点击此处] [CloudNotes中文系列文章汇总列表请点击此处] [查看CloudNotes源代码请点击此处] 有时候,同一个名词,针对不同的人群 ...
- EC笔记:第4部分:19、设计class犹如设计type
设计一个class,应该考虑以下问题: 新type的对象应该怎样创建和销毁? 构造函数 析构函数 内存分配 内存释放 对象的初始化和对象的赋值应该有什么样的差别? 拷贝构造函数 赋值运算符 新对象如果 ...
- Android Studio项目提交到GitHub
1. 现在并安装Git for Windows: 2. 点击File->Settings->Version Control->Git,配置git.exe的路径,并点击Test按钮测试 ...
- 居然是Firefox没有抛弃我们
面向企业级市场,一款网页浏览器的很多特性不是说改就改,说丢弃就丢弃.就像微软不能抛弃IE一样,Firefox也有类似的定位和使命. Firefox即尝试提供企业级市场所需的特性稳定的软件版本(LTS) ...
- MongoDB进行MapReduce的数据类型
有很长一段时间没更新博客了,因为最近都比较忙,今天算是有点空闲吧.本文主要是介绍MapReduce在MongoDB上的使用,它与sql的分组.聚集类似,也是先map分组,再用reduce统计,最后还可 ...
- Maven+Spring+Spring MVC+MyBatis+MySQL,搭建SSM框架环境【转】
项目建设完成之后的结构: 数据库的表结构如下: 环境建设:搭建Maven环境.Tomcat环境.需要MySql 数据库支持,使用的编程工具Eclipse (这些是前期准备): 开始创建工程: 1.创建 ...
- OC多态
要点: 1.多种形态,引用的多种形态对于一个引用变量,可以指向任何类的对象.对于一个父类的引用(类与类之间有一种继承关系),可以指向子类,也可以指向本类,指向的类型不同.当通过此引用向对象发送消息,调 ...
- 用collectionview实现瀑布流-转(后面附demo,供参考)
算法总体思路 先说一下总体上的思路.既然图片的大小.位置各不一样,我们很自然地会想到需要算出每个item的frame,然后把这些frame赋值给当前item的UICollectionViewLayou ...
- 看完你也能独立负责项目!产品经理做APP从头到尾的所有工作流程详解!
(一)项目启动前 从事产品的工作一年多,但自己一直苦于这样或者那样的困惑,很多人想要从事产品,或者老板自己创业要亲自承担产品一职,但他们对产品这个岗位的认识却不明晰,有的以为是纯粹的画原型,有的是以为 ...