题面戳我

题目描述

如题,一开始有N个小根堆,每个堆包含且仅包含一个数。接下来需要支持两种操作:

操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或第y个数已经被删除或第x和第y个数在用一个堆内,则无视此操作)

操作2: 2 x 输出第x个数所在的堆最小数,并将其删除(若第x个数已经被删除,则输出-1并无视删除操作)

输入输出格式

输入格式:

第一行包含两个正整数N、M,分别表示一开始小根堆的个数和接下来操作的个数。

第二行包含N个正整数,其中第i个正整数表示第i个小根堆初始时包含且仅包含的数。

接下来M行每行2个或3个正整数,表示一条操作,格式如下:

操作1 : 1 x y

操作2 : 2 x

输出格式:

输出包含若干行整数,分别依次对应每一个操作2所得的结果。

输入输出样例

输入样例#1:

5 5
1 5 4 2 3
1 1 5
1 2 5
2 2
1 4 2
2 2

输出样例#1:

1
2

说明

当堆里有多个最小值时,优先删除原序列的靠前的,否则会影响后续操作1导致WA。

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=100000,M<=100000

sol

左偏树模板题,考虑到要讲所以就把陈年代码翻出来写一写题解。

我们考虑到左偏树的一个非常优秀的性质:树高的期望是\(logn\)

所以判断是否在同一个堆中,只要暴力跳堆顶即可。

(其实也是可以写个并查集的啦)

其他就好说了。

code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX=100005;
int key[MAX],ls[MAX],rs[MAX],fa[MAX],dis[MAX],del[MAX],n,m;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=-1,ch=getchar();
while (ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+ch-'0';
ch=getchar();
}
return x*w;
} int Merge(int A,int B)
{
if (!A) return B;
if (!B) return A;
if (key[A]>key[B]||(key[A]==key[B]&&A>B)) swap(A,B);
rs[A]=Merge(rs[A],B);
fa[rs[A]]=A;
if (dis[ls[A]]<dis[rs[A]]) swap(ls[A],rs[A]);
dis[A]=dis[rs[A]]+1;
return A;
}
void Delete(int A)
{
del[A]=1;
fa[ls[A]]=fa[rs[A]]=0;
Merge(ls[A],rs[A]);
}
int find(int x)
{
while (fa[x]) x=fa[x];
return x;
}
int main()
{
n=gi();m=gi();
for (int i=1;i<=n;i++) key[i]=gi();
while (m--)
{
int opt=gi();
if (opt==1)
{
int x=gi(),y=gi();
int fx=find(x),fy=find(y);
if (del[x]||del[y]||fx==fy) continue;
Merge(fx,fy);
}
else
{
int x=gi();
if (del[x]) printf("-1\n");
else
{
int fx=find(x);
printf("%d\n",key[fx]);
Delete(fx);
}
}
}
return 0;
}

[Luogu3377]【模板】左偏树(可并堆)的更多相关文章

  1. [note]左偏树(可并堆)

    左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...

  2. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  3. [luogu3377][左偏树(可并堆)]

    题目链接 思路 左偏树的模板题,参考左偏树学习笔记 对于这道题我是用一个并查集维护出了哪些点是在同一棵树上,也可以直接log的往上跳寻找根节点 代码 #include<cstdio> #i ...

  4. HDU3031 To Be Or Not To Be 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU3031 题意概括 喜羊羊和灰太狼要比赛. 有R次比赛. 对于每次比赛,首先输入n,m,n表示喜羊羊和灰 ...

  5. HDU5818 Joint Stacks 左偏树,可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU5818 题意概括 有两个栈,有3种操作. 第一种是往其中一个栈加入一个数: 第二种是取出其中一个栈的顶 ...

  6. BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆

    https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...

  7. Monkey King(左偏树 可并堆)

    我们知道如果要我们给一个序列排序,按照某种大小顺序关系,我们很容易想到优先队列,的确很方便,但是优先队列也有解决不了的问题,当题目要求你把两个优先队列合并的时候,这就实现不了了 优先队列只有插入 删除 ...

  8. 洛谷 P3377 模板左偏树

    题目:https://www.luogu.org/problemnew/show/P3377 左偏树的模板题: 加深了我对空 merge 的理解: 结构体的编号就是原序列的位置. 代码如下: #inc ...

  9. BZOJ 5494: [2019省队联测]春节十二响 (左偏树 可并堆)

    题意 略 分析 稍微yy一下可以感觉就是一个不同子树合并堆,然后考场上写了一发左偏树,以为100分美滋滋.然而发现自己傻逼了,两个堆一一对应合并后剩下的一坨直接一次合并进去就行了.然鹅我这个sb把所有 ...

  10. BZOJ1455 罗马游戏 左偏树 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1455 题意概括 n个人,2种操作. 一种是合并两个人团,一种是杀死某一个人团的最弱的人. 题解 左 ...

随机推荐

  1. [Python Study Notes] 抉择--Python2.x Or Python 3.x

    In summary : Python 2.x is legacy, Python 3.x is the present and future of the language Python 3.0 w ...

  2. Java基础点滴

    1. 关于interface的定义 [修饰符] interface 接口名 [extends 父接口名列表]{ [public] [static] [final] 常量;[public] [abstr ...

  3. UESTC 251 最长上升子序列O(nlgn)

    O(n^2)过不了.必须要用一个额外的数组保存当前长度最小值,然后lgn查表 AC代码 #include<cstdio> #include<algorithm> using n ...

  4. 算法训练 K好数 数位DP+同余定理

    思路:d(i,j)表示以i开头,长度为j的K好数的个数,转移方程就是 for(int u = 0; u < k; ++u) { int x = abs(i - u); if(x == 1) co ...

  5. 【BZOJ1834】 网络扩容

    Time Limit: 1000 ms   Memory Limit: 128 MB Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费 ...

  6. struts2框架概述

    框架概述 什么是框架,为什么使用框架,框架优点 框架(framework)是一个基本概念上的结构,用于去解决或者处理复杂的问题 框架,即framework.其实就是某种应用的半成品,就是一组组件,供你 ...

  7. 内置函数值 -- chr() ord() -- 字符和ascii的转换

    英文文档: chr(i) Return the string representing a character whose Unicode code point is the integer i. F ...

  8. django框架 - 环境的搭建

    本章介绍django的mac环境的搭建,IDE使用的是pycharm,步骤如下: 第一步:新建项目 第二步:选择django项目模版 第三步:在终端中使用命令创建myapp应用 第四步:在settin ...

  9. VxWorks:添加自己组件到Tornado

    项目要求将cpci的驱动做成Tornado组件,尝试了一下! Folder FOLDER_CPCI {                    //上层组件设置  NAME  cpci componen ...

  10. Struts2实现文件上传报错(四)

    1.具体错误如下 2014-5-2 21:38:29 com.opensymphony.xwork2.util.logging.jdk.JdkLogger error 严重: Exception oc ...