在分析英文文本时,我们可能会关心文本当中每个词语的词性和在句中起到的作用。识别文本中各个单词词性的过程,可以称为词性标注。

英语主要的八种词性分别为:

1、名词(noun)

2、代词(pronoun)

3、动词(verb)

4、形容词(adjective)

5、副词(adverb)

6、介词(preposition)

7、连词(conjunction)

8、感叹词(interjection)

其他还包括数词(numeral)和冠词(article)等。

在使用第三方工具(如NLTK)进行词性标注时,返回的结果信息量可能比上述八种词性要丰富一些。比如NLTK,其所标注的词性可以参考Penn Treebank Project给出的pos tagset,如下图:

举例来说,我们使用NLTK对一段英文进行词性标注:

这段英文摘自19年3月13日华盛顿邮报有关加拿大停飞波音737客机相关报道,段落的原文为:

After the Lion Air crash, questions were raised, so Boeing sent further instructions that it said pilots should know,” he said, according to the Associated Press. “Those relate to the specific behavior of this specific type of aircraft. As a result, training was given by Boeing, and our pilots have taken it and put it into our manuals.

我们对该段落进行断句,然后对每句话进行分词,再对每个词语进行词性标注,然后循环打印每句话中每个词的词性标注结果,具体代码如下:

 import nltk
passage = """After the Lion Air crash, questions were raised, so Boeing sent further instructions that it said pilots should know,” he said, according to the Associated Press. “Those relate to the specific behavior of this specific type of aircraft. As a result, training was given by Boeing, and our pilots have taken it and put it into our manuals."""
sentences = nltk.sent_tokenize( passage )
for sent in sentences:
tokens = nltk.word_tokenize( sent )
posTags = nltk.pos_tag( tokens )
print( posTags )

代码的print()函数打印的内容如下:

[('After', 'IN'), ('the', 'DT'), ('Lion', 'NNP'), ('Air', 'NNP'), ('crash', 'NN'), (',', ','), ('questions', 'NNS'), ('were', 'VBD'), ('raised', 'VBN'), (',', ','), ('so', 'IN'), ('Boeing', 'NNP'), ('sent', 'VBD'), ('further', 'JJ'), ('instructions', 'NNS'), ('that', 'IN'), ('it', 'PRP'), ('said', 'VBD'), ('pilots', 'NNS'), ('should', 'MD'), ('know', 'VB'), (',', ','), ('”', 'FW'), ('he', 'PRP'), ('said', 'VBD'), (',', ','), ('according', 'VBG'), ('to', 'TO'), ('the', 'DT'), ('Associated', 'NNP'), ('Press', 'NNP'), ('.', '.')]
[('“Those', 'JJ'), ('relate', 'NN'), ('to', 'TO'), ('the', 'DT'), ('specific', 'JJ'), ('behavior', 'NN'), ('of', 'IN'), ('this', 'DT'), ('specific', 'JJ'), ('type', 'NN'), ('of', 'IN'), ('aircraft', 'NN'), ('.', '.')]
[('As', 'IN'), ('a', 'DT'), ('result', 'NN'), (',', ','), ('training', 'NN'), ('was', 'VBD'), ('given', 'VBN'), ('by', 'IN'), ('Boeing', 'NNP'), (',', ','), ('and', 'CC'), ('our', 'PRP$'), ('pilots', 'NNS'), ('have', 'VBP'), ('taken', 'VBN'), ('it', 'PRP'), ('and', 'CC'), ('put', 'VB'), ('it', 'PRP'), ('into', 'IN'), ('our', 'PRP$'), ('manuals', 'NNS'), ('.', '.')]

如何看懂上面的输出结果:段落中的每句话为一个list,每句话中的每个词及其词性表示为一个tuple,左边为单词本身,右边为词性缩写,这些缩写的具体含义可以查找Penn Treebank Pos Tags表格。

我们对代码稍微修改一下,以便使结果呈现更清楚一些,而不至于看的太费力,如下:

 import nltk
passage = """After the Lion Air crash, questions were raised, so Boeing sent further instructions that it said pilots should know,” he said, according to the Associated Press. “Those relate to the specific behavior of this specific type of aircraft. As a result, training was given by Boeing, and our pilots have taken it and put it into our manuals."""
sentences = nltk.sent_tokenize( passage )
for sent in sentences:
tokens = nltk.word_tokenize( sent )
posTags = nltk.pos_tag( tokens )
for tag in posTags:
print( "{}({}) ".format( tag[0], tag[1] ), end = "" )

输出结果如下(标注的词性以括号形式紧跟在每个单词右侧):

After(IN) the(DT) Lion(NNP) Air(NNP) crash(NN) ,(,) questions(NNS) were(VBD) raised(VBN) ,(,) so(IN) Boeing(NNP) sent(VBD) further(JJ) instructions(NNS) that(IN) it(PRP) said(VBD) pilots(NNS) should(MD) know(VB) ,(,) ”(FW) he(PRP) said(VBD) ,(,) according(VBG) to(TO) the(DT) Associated(NNP) Press(NNP) .(.) “Those(JJ) relate(NN) to(TO) the(DT) specific(JJ) behavior(NN) of(IN) this(DT) specific(JJ) type(NN) of(IN) aircraft(NN) .(.) As(IN) a(DT) result(NN) ,(,) training(NN) was(VBD) given(VBN) by(IN) Boeing(NNP) ,(,) and(CC) our(PRP$) pilots(NNS) have(VBP) taken(VBN) it(PRP) and(CC) put(VB) it(PRP) into(IN) our(PRP$) manuals(NNS) .(.) 

参考文献:

1、https://en.wikipedia.org/wiki/Part_of_speech

2、https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

3、https://www.washingtonpost.com/local/trafficandcommuting/canada-grounds-boeing-737-max-8-leaving-us-as-last-major-user-of-plane/2019/03/13/25ac2414-459d-11e9-90f0-0ccfeec87a61_story.html?utm_term=.f359a714d4d8

POS Tagging 标签类型查询表(Penn Treebank Project)的更多相关文章

  1. html <input>标签类型属性type(file、text、radio、hidden等)详细介绍

    html <input>标签类型属性type(file.text.radio.hidden等)详细介绍 转载请注明:文章转载自:[169IT-最新最全的IT资讯] html <inp ...

  2. 第五篇、HTML标签类型

    <!--1.块级标签 独占一行,可以设置高度和宽度 如:div p h ul li  -----display: none(隐藏标签) block(让行内标签变块级标签) inline(让块级标 ...

  3. POS tagging的解釋

    轉錄文章~~ 什么是词性标注(POS tagging) Tue, 04/13/2010 - 10:36 — Fuller 词性标注也叫词类标注,POS tagging是part-of-speech t ...

  4. 什么是词性标注(POS tagging)

    词性标注也叫词类标注,POS tagging是part-of-speech tagging的缩写. 维基百科对POS Tagging的定义: In corpus linguistics, part-o ...

  5. CSS标签类型和样式表继承与优先级

    标签类型 块级标签 什么是块级标签:在html中<div>. <p>.h1~h6.<form>.<ul> 和 <li>就是块级元素 块级标签 ...

  6. Penn Treebank

    NLP中常用的PTB语料库,全名Penn Treebank.Penn Treebank是一个项目的名称,项目目的是对语料进行标注,标注内容包括词性标注以及句法分析. 语料来源为:1989年华尔街日报语 ...

  7. 创建标签的两种方法insertAdjacentHTML 和 createElement 创建标签 setAttribute 赋予标签类型 appendChild 插入标签

    1. 建立字符串和insertAdjacentHTML('beforeEnd', ) 2. 通过createElement 创建标签  setAttribute 赋予标签类型 appendChild ...

  8. NFC 标签类型

    NFC 标签类型 Type 1:Type 1 Tag is based on ISO/IEC 14443A. This tag type is read and re-write capable. T ...

  9. 伪类的格式重点:父标签层级 & 当前标签类型

    伪类的格式重点:父标签层级 & 当前标签类型 通过例子说明: css1: span:nth-of-type(2){color: red;} css2: span :nth-of-type(2) ...

随机推荐

  1. 解决Debian 9 iwlwifi固件缺失导致无法连接无线网络的问题

    本文由荒原之梦原创,原文链接:http://zhaokaifeng.com/?p=692 前言: 本文介绍了解决Debian9安装完成后无法连接wifi的问题以及一些扩展知识. 问题描述: 安装Deb ...

  2. aliyun oss操作汇总

    // endpoint以杭州为例,其它region请按实际情况填写 String endpoint = "http://oss-cn-hangzhou.aliyuncs.com"; ...

  3. 在centos,docker中安装HeadlessChrome

    在centos6中安装chrome与chrome-driver,中间走了很多弯路,遇到很多坑,现将详细步骤总结如下.参考博客链接:https://blog.csdn.net/u013849486/ar ...

  4. 把一个机器上1天内新增的文件用rsync传送到另外一台机器

    我的shell很菜,只好用shell和php结合来做 1.查找新增的文件,构造rsync的参数,把结果写入到log中 find /data/bmob/test/teststorage/data/ -m ...

  5. 查询订阅某topic的所有consumer group(Java API)

    在网上碰到的问题,想了下使用现有的API还是可以实现的. 首先,需要引入Kafka服务器端代码,比如加入Kafka 1.0.0依赖: Maven <dependency> <grou ...

  6. python3:操作excel文件

    前提:自动化接口测试中,可以将用例放在excel中管理.结合实际情况讲解如何操作excel文件 1.安装xlrd:pip install xlrd 2.导入模块:import xlrd 3.打开Exc ...

  7. 自定义的Config节点及使用

    示例   下面的代码示例演示如何在创建自定义节时使用 ConfigurationProperty. C# VB   using System; using System.Configuration; ...

  8. const和static readonly的区别

    我们都知道,const和static readonly的确很像:通过类名而不是对象名进行访问,在程序中只读等等. 在多数情况下可以混用.二者本质的区别在于,const的值是在编译期间确定的,因此只能在 ...

  9. 显著性检测(saliency detection)评价指标之NSS的Matlab代码实现

    calcNSSscore.m function [ score ] = calcNSSscore( salMap, eyeMap ) %calcNSSscore Calculate NSS score ...

  10. MYSQL—— char 与 varchar的区别!

    一.char 和 varchar 的区别: 1)取值范围: char:取值范围:0~255 varchar:取值范围:0~65535 2)空间占用与速度: char: 定长字符串,占用空间大,速度快, ...