Given two strings representing two complex numbers.

You need to return a string representing their multiplication. Note i2 = -1 according to the definition.

Example 1:

Input: "1+1i", "1+1i"
Output: "0+2i"
Explanation: (1 + i) * (1 + i) = 1 + i

2

 + 2 * i = 2i, and you need convert it to the form of 0+2i.

Example 2:

Input: "1+-1i", "1+-1i"
Output: "0+-2i"
Explanation: (1 - i) * (1 - i) = 1 + i

2

 - 2 * i = -2i, and you need convert it to the form of 0+-2i.

Note:

  1. The input strings will not have extra blank.
  2. The input strings will be given in the form of a+bi, where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.

这道题让我们求复数的乘法,有关复数的知识最早还是在本科的复变函数中接触到的,难起来还真是难。但是这里只是最简单的乘法,只要利用好定义i2=-1就可以解题,而且这道题的另一个考察点其实是对字符的处理,我们需要把字符串中的实部和虚部分离开并进行运算,那么我们可以用STL中自带的find_last_of函数来找到加号的位置,然后分别拆出实部虚部,进行运算后再变回字符串,参见代码如下:

解法一:

class Solution {
public:
string complexNumberMultiply(string a, string b) {
int n1 = a.size(), n2 = b.size();
auto p1 = a.find_last_of("+"), p2 = b.find_last_of("+");
int a1 = stoi(a.substr(, p1)), b1 = stoi(b.substr(, p2));
int a2 = stoi(a.substr(p1 + , n1 - p1 - ));
int b2 = stoi(b.substr(p2 + , n2 - p2 - ));
int r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};

下面这种方法利用到了字符串流类istringstream来读入字符串,直接将实部虚部读入int变量中,注意中间也要把加号读入char变量中,然后再进行运算即可,参见代码如下:

解法二:

class Solution {
public:
string complexNumberMultiply(string a, string b) {
istringstream is1(a), is2(b);
int a1, a2, b1, b2, r1, r2;
char plus;
is1 >> a1 >> plus >> a2;
is2 >> b1 >> plus >> b2;
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};

下面这种解法实际上是C语言的解法,用到了sscanf这个读入字符串的函数,需要把string转为cost char*型,然后标明读入的方式和类型,再进行运算即可,参见代码如下:

解法三:

class Solution {
public:
string complexNumberMultiply(string a, string b) {
int a1, a2, b1, b2, r1, r2;
sscanf(a.c_str(), "%d+%di", &a1, &a2);
sscanf(b.c_str(), "%d+%di", &b1, &b2);
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};

参考资料:

https://discuss.leetcode.com/topic/84261/java-3-liner

https://discuss.leetcode.com/topic/84382/c-using-stringstream

https://discuss.leetcode.com/topic/84323/java-elegant-solution

https://discuss.leetcode.com/topic/84508/cpp-solution-with-sscanf

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Complex Number Multiplication 复数相乘的更多相关文章

  1. LeetCode Complex Number Multiplication

    原题链接在这里:https://leetcode.com/problems/complex-number-multiplication/description/ 题目: Given two strin ...

  2. LeetCode 537. 复数乘法(Complex Number Multiplication)

    537. 复数乘法 537. Complex Number Multiplication 题目描述 Given two strings representing two complex numbers ...

  3. LC 537. Complex Number Multiplication

    Given two strings representing two complex numbers. You need to return a string representing their m ...

  4. 【LeetCode】537. Complex Number Multiplication 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 日期 题目地址:https://leetcode.com/pr ...

  5. [Swift]LeetCode537. 复数乘法 | Complex Number Multiplication

    Given two strings representing two complex numbers. You need to return a string representing their m ...

  6. [LeetCode] Sparse Matrix Multiplication 稀疏矩阵相乘

    Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...

  7. 537 Complex Number Multiplication 复数乘法

    详见:https://leetcode.com/problems/complex-number-multiplication/description/ C++: class Solution { pu ...

  8. 537. Complex Number Multiplication

    题目大意: 给出a, b两个用字符串表示的虚数,求a*b 题目思路: 偷了个懒,Python3的正则表达式匹配了一下,当然acm里肯定是不行的 class Solution: def complexN ...

  9. C#版 - Leetcode 191. Number of 1 Bits-题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

随机推荐

  1. Oracle profile 使用技巧

    给scott用户分配一个profile要求如下: 1.尝试登录的次数最多4次: 2.如果4次输入错误,则锁定该用户2天: 3.密码每隔5天修改一次,宽限期为2天: 答: SQL>conn sys ...

  2. 原生js封装添加class,删除class

    一.添加class function addClass(ele,cName) { var arr = ele.className.split(' ').concat(cName.split(" ...

  3. vs运行单个cpp文件

    打开vs,新建项目,左侧win32见上图,右侧 win32控制台应用程序,填好名称后,确定----下一步,如下图,空项目 紧接着如下图,通过现有项添加自己的cpp文件,便可以运行了

  4. java基础笔记(6)----面向对象的三大特性

    简介:面向对象的三大特性就是封装,继承,多态,是面向对象的核心. 封装 简介:封装是类的边界,可以对数据起到保护作用 特性:属性私有,提供公开的get/set方法 属性私有:private 数据类型 ...

  5. [BZOJ 4419][Shoi2013]发微博

    4419: [Shoi2013]发微博 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 665  Solved: 364[Submit][Status] ...

  6. Beta总结篇

    45°炸 031502601 蔡鸿杰 031502604 陈甘霖 031502632 伍晨薇 一.项目预期进展及现实进展 项目预期计划 现实进展 Github使用 √ 日拍 (调用相机.相册) √ 足 ...

  7. 201621123031 《Java程序设计》第5周学习总结

    作业05-继承.多态.抽象类与接口 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:接口.继承.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需 ...

  8. Tornado 用户身份验证框架

    1.安全cookie机制 import tornado.web session_id = 1 class MainHandler(tornado.web.RequestHandler): def ge ...

  9. 关于webService发布的wsdl中的import问题解决

    大家都知道jdk1.6及以后都支持了对webService的原生态的支持:它在发布时会生成一个wsdl和一个xsd(一个类只生成一个xsd)所以就保留了引用关系,如下: <?xml versio ...

  10. bzoj千题计划252:bzoj1095: [ZJOI2007]Hide 捉迷藏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1095 点分树+堆 请去看 http://www.cnblogs.com/TheRoadToTheGo ...