[LeetCode] Complex Number Multiplication 复数相乘
Given two strings representing two complex numbers.
You need to return a string representing their multiplication. Note i2 = -1 according to the definition.
Example 1:
Input: "1+1i", "1+1i"
Output: "0+2i"
Explanation: (1 + i) * (1 + i) = 1 + i
2
+ 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
Input: "1+-1i", "1+-1i"
Output: "0+-2i"
Explanation: (1 - i) * (1 - i) = 1 + i
2
- 2 * i = -2i, and you need convert it to the form of 0+-2i.
Note:
- The input strings will not have extra blank.
- The input strings will be given in the form of a+bi, where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.
这道题让我们求复数的乘法,有关复数的知识最早还是在本科的复变函数中接触到的,难起来还真是难。但是这里只是最简单的乘法,只要利用好定义i2=-1就可以解题,而且这道题的另一个考察点其实是对字符的处理,我们需要把字符串中的实部和虚部分离开并进行运算,那么我们可以用STL中自带的find_last_of函数来找到加号的位置,然后分别拆出实部虚部,进行运算后再变回字符串,参见代码如下:
解法一:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
int n1 = a.size(), n2 = b.size();
auto p1 = a.find_last_of("+"), p2 = b.find_last_of("+");
int a1 = stoi(a.substr(, p1)), b1 = stoi(b.substr(, p2));
int a2 = stoi(a.substr(p1 + , n1 - p1 - ));
int b2 = stoi(b.substr(p2 + , n2 - p2 - ));
int r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
下面这种方法利用到了字符串流类istringstream来读入字符串,直接将实部虚部读入int变量中,注意中间也要把加号读入char变量中,然后再进行运算即可,参见代码如下:
解法二:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
istringstream is1(a), is2(b);
int a1, a2, b1, b2, r1, r2;
char plus;
is1 >> a1 >> plus >> a2;
is2 >> b1 >> plus >> b2;
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
下面这种解法实际上是C语言的解法,用到了sscanf这个读入字符串的函数,需要把string转为cost char*型,然后标明读入的方式和类型,再进行运算即可,参见代码如下:
解法三:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
int a1, a2, b1, b2, r1, r2;
sscanf(a.c_str(), "%d+%di", &a1, &a2);
sscanf(b.c_str(), "%d+%di", &b1, &b2);
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
参考资料:
https://discuss.leetcode.com/topic/84261/java-3-liner
https://discuss.leetcode.com/topic/84382/c-using-stringstream
https://discuss.leetcode.com/topic/84323/java-elegant-solution
https://discuss.leetcode.com/topic/84508/cpp-solution-with-sscanf
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Complex Number Multiplication 复数相乘的更多相关文章
- LeetCode Complex Number Multiplication
原题链接在这里:https://leetcode.com/problems/complex-number-multiplication/description/ 题目: Given two strin ...
- LeetCode 537. 复数乘法(Complex Number Multiplication)
537. 复数乘法 537. Complex Number Multiplication 题目描述 Given two strings representing two complex numbers ...
- LC 537. Complex Number Multiplication
Given two strings representing two complex numbers. You need to return a string representing their m ...
- 【LeetCode】537. Complex Number Multiplication 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 日期 题目地址:https://leetcode.com/pr ...
- [Swift]LeetCode537. 复数乘法 | Complex Number Multiplication
Given two strings representing two complex numbers. You need to return a string representing their m ...
- [LeetCode] Sparse Matrix Multiplication 稀疏矩阵相乘
Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...
- 537 Complex Number Multiplication 复数乘法
详见:https://leetcode.com/problems/complex-number-multiplication/description/ C++: class Solution { pu ...
- 537. Complex Number Multiplication
题目大意: 给出a, b两个用字符串表示的虚数,求a*b 题目思路: 偷了个懒,Python3的正则表达式匹配了一下,当然acm里肯定是不行的 class Solution: def complexN ...
- C#版 - Leetcode 191. Number of 1 Bits-题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
随机推荐
- KVM之八:快照创建、恢复与删除
kvm虚拟机默认使用raw格式的镜像格式,性能最好,速度最快,它的缺点就是不支持一些新的功能,如支持镜像,zlib磁盘压缩,AES加密等.要使用镜像功能,磁盘格式必须为qcow2.下面开始kvm虚拟机 ...
- kvm之三:本地安装虚拟机
1.格式化新添加的磁盘 [root@kvm ~ ::]#fdisk /dev/sdb Command (m for help): n //新建分区 Command action e extended ...
- 控制反转( IoC)和依赖注入(DI)
控制反转( IoC)和依赖注入(DI) tags: 容器 依赖注入 IOC DI 控制反转 引言:如果你看过一些框架的源码或者手册,像是laravel或者tp5之类的,应该会提到容器,依赖注入,控制反 ...
- python 函数 装饰器的使用方法
一.装饰器 首先,我们要了解到什么是开放封闭式原则? 软件一旦上线后,对修改源代码是封闭的,对功能的扩张是开放的,所以我们应该遵循开放封闭的原则. 也就是说:我们必须找到一种解决方案,能够在不修改一 ...
- git解决修改代码后无法push的问题failed to push some refs to 'ssh://git@xxx.xxx.xx/xx.git'
今天在使用git提交代码的时候,犯了个很低级的错误,按照一切流程当我add并commit提交代码,最后使用push到远程仓库, 接下来奇怪的事情发生了,push之后,查看远程仓库代码并没有发现提交记录 ...
- 2018.3.29 div内容格式设置
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> ...
- alpha冲刺第七天
一.合照 二.项目燃尽图 三.项目进展 问答界面问答内容呈现 设置里的帐号设置呈现 能爬取教务处网站的内容保存到本地数据库 四.明日规划 继续完善各个内容的界面呈现 查找关于如何自动更新爬取内容 搜索 ...
- 【Alpha版本】冲刺阶段 - Day7 - 靠泊
Alpha:指集成了主要功能的第一个试用版本.在这个版本中有些小功能并未实现.事实上很多软件的 Alpha 版本只是在内部使用.给外部用户使用的 Alpha 版本会起一个比较美妙的名字,例如,技术预览 ...
- B-day5
1.昨天的困难,今天解决的进度,以及明天要做的事情 昨天的困难:昨天虽然完成了风险数据的图表统计,但是界面风格仍然不太满意,还在抓紧调试中:还有登录页的背景图,在想应该如何设计, 什么样的风格才好. ...
- 【iOS】单元测试
iOS单元测试(作用及入门提升) 字数1704 阅读16369 评论26 喜欢247 由于只是一些简单实用的东西,学学还是挺不错的.其实单元测试用的好,开发起来也会快很多.单元测试对于我目前来说,就是 ...