[LeetCode] Complex Number Multiplication 复数相乘
Given two strings representing two complex numbers.
You need to return a string representing their multiplication. Note i2 = -1 according to the definition.
Example 1:
Input: "1+1i", "1+1i"
Output: "0+2i"
Explanation: (1 + i) * (1 + i) = 1 + i
2
+ 2 * i = 2i, and you need convert it to the form of 0+2i.
Example 2:
Input: "1+-1i", "1+-1i"
Output: "0+-2i"
Explanation: (1 - i) * (1 - i) = 1 + i
2
- 2 * i = -2i, and you need convert it to the form of 0+-2i.
Note:
- The input strings will not have extra blank.
- The input strings will be given in the form of a+bi, where the integer a and b will both belong to the range of [-100, 100]. And the output should be also in this form.
这道题让我们求复数的乘法,有关复数的知识最早还是在本科的复变函数中接触到的,难起来还真是难。但是这里只是最简单的乘法,只要利用好定义i2=-1就可以解题,而且这道题的另一个考察点其实是对字符的处理,我们需要把字符串中的实部和虚部分离开并进行运算,那么我们可以用STL中自带的find_last_of函数来找到加号的位置,然后分别拆出实部虚部,进行运算后再变回字符串,参见代码如下:
解法一:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
int n1 = a.size(), n2 = b.size();
auto p1 = a.find_last_of("+"), p2 = b.find_last_of("+");
int a1 = stoi(a.substr(, p1)), b1 = stoi(b.substr(, p2));
int a2 = stoi(a.substr(p1 + , n1 - p1 - ));
int b2 = stoi(b.substr(p2 + , n2 - p2 - ));
int r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
下面这种方法利用到了字符串流类istringstream来读入字符串,直接将实部虚部读入int变量中,注意中间也要把加号读入char变量中,然后再进行运算即可,参见代码如下:
解法二:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
istringstream is1(a), is2(b);
int a1, a2, b1, b2, r1, r2;
char plus;
is1 >> a1 >> plus >> a2;
is2 >> b1 >> plus >> b2;
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
下面这种解法实际上是C语言的解法,用到了sscanf这个读入字符串的函数,需要把string转为cost char*型,然后标明读入的方式和类型,再进行运算即可,参见代码如下:
解法三:
class Solution {
public:
string complexNumberMultiply(string a, string b) {
int a1, a2, b1, b2, r1, r2;
sscanf(a.c_str(), "%d+%di", &a1, &a2);
sscanf(b.c_str(), "%d+%di", &b1, &b2);
r1 = a1 * b1 - a2 * b2, r2 = a1 * b2 + a2 * b1;
return to_string(r1) + "+" + to_string(r2) + "i";
}
};
参考资料:
https://discuss.leetcode.com/topic/84261/java-3-liner
https://discuss.leetcode.com/topic/84382/c-using-stringstream
https://discuss.leetcode.com/topic/84323/java-elegant-solution
https://discuss.leetcode.com/topic/84508/cpp-solution-with-sscanf
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Complex Number Multiplication 复数相乘的更多相关文章
- LeetCode Complex Number Multiplication
原题链接在这里:https://leetcode.com/problems/complex-number-multiplication/description/ 题目: Given two strin ...
- LeetCode 537. 复数乘法(Complex Number Multiplication)
537. 复数乘法 537. Complex Number Multiplication 题目描述 Given two strings representing two complex numbers ...
- LC 537. Complex Number Multiplication
Given two strings representing two complex numbers. You need to return a string representing their m ...
- 【LeetCode】537. Complex Number Multiplication 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 解题方法 日期 题目地址:https://leetcode.com/pr ...
- [Swift]LeetCode537. 复数乘法 | Complex Number Multiplication
Given two strings representing two complex numbers. You need to return a string representing their m ...
- [LeetCode] Sparse Matrix Multiplication 稀疏矩阵相乘
Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...
- 537 Complex Number Multiplication 复数乘法
详见:https://leetcode.com/problems/complex-number-multiplication/description/ C++: class Solution { pu ...
- 537. Complex Number Multiplication
题目大意: 给出a, b两个用字符串表示的虚数,求a*b 题目思路: 偷了个懒,Python3的正则表达式匹配了一下,当然acm里肯定是不行的 class Solution: def complexN ...
- C#版 - Leetcode 191. Number of 1 Bits-题解
版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...
随机推荐
- Oracle profile 使用技巧
给scott用户分配一个profile要求如下: 1.尝试登录的次数最多4次: 2.如果4次输入错误,则锁定该用户2天: 3.密码每隔5天修改一次,宽限期为2天: 答: SQL>conn sys ...
- 原生js封装添加class,删除class
一.添加class function addClass(ele,cName) { var arr = ele.className.split(' ').concat(cName.split(" ...
- vs运行单个cpp文件
打开vs,新建项目,左侧win32见上图,右侧 win32控制台应用程序,填好名称后,确定----下一步,如下图,空项目 紧接着如下图,通过现有项添加自己的cpp文件,便可以运行了
- java基础笔记(6)----面向对象的三大特性
简介:面向对象的三大特性就是封装,继承,多态,是面向对象的核心. 封装 简介:封装是类的边界,可以对数据起到保护作用 特性:属性私有,提供公开的get/set方法 属性私有:private 数据类型 ...
- [BZOJ 4419][Shoi2013]发微博
4419: [Shoi2013]发微博 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 665 Solved: 364[Submit][Status] ...
- Beta总结篇
45°炸 031502601 蔡鸿杰 031502604 陈甘霖 031502632 伍晨薇 一.项目预期进展及现实进展 项目预期计划 现实进展 Github使用 √ 日拍 (调用相机.相册) √ 足 ...
- 201621123031 《Java程序设计》第5周学习总结
作业05-继承.多态.抽象类与接口 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:接口.继承.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需 ...
- Tornado 用户身份验证框架
1.安全cookie机制 import tornado.web session_id = 1 class MainHandler(tornado.web.RequestHandler): def ge ...
- 关于webService发布的wsdl中的import问题解决
大家都知道jdk1.6及以后都支持了对webService的原生态的支持:它在发布时会生成一个wsdl和一个xsd(一个类只生成一个xsd)所以就保留了引用关系,如下: <?xml versio ...
- bzoj千题计划252:bzoj1095: [ZJOI2007]Hide 捉迷藏
http://www.lydsy.com/JudgeOnline/problem.php?id=1095 点分树+堆 请去看 http://www.cnblogs.com/TheRoadToTheGo ...