最近用spark的mlib模块中的协同过滤库做个性化推荐。spark里面用的是als算法,本质上是矩阵分解svd降维,把一个M*N的用户商品评分矩阵分解为M*K的userFeature(用户特征矩阵)和K*N的productFeature(商品特征矩阵),由于K远小于N和M,存储和计算获得相应的优化。

这样对于一个用户a,推荐100个商品怎么做呢?取a的特征向量(1*K)和productFeature相乘得到1*M的结果向量,向量中的值代表该商品和用户a的相关度,取结果向量中前100的商品推荐给用户。

过程很简单,但是当M和N非常大呢?假设M为千万级,N为百万级,推荐一个商品需要KN+N*logN,用spark提供的单用户推荐api大约需要500ms,那么对于1000万用户,就需要500万秒,大约50几天。spark考虑到这种场景,所以提供了一次性推荐所有用户的api:recommendProductsForUsers。这个方法速度挺快,但内部采用userFeature和productFeature笛卡尔积的方法,这样产生了大量的shuffle,需要大量内存。用户量增加的时候,经常因为内存不够OOM挂掉,很不稳定。

优化势在必行,我们的目标是稳定和可扩展。分析一下整个计算过程,最大的问题就是用户量巨大且不稳定,一次性全量用户推荐需要大量内存和计算。随用户量动态调整节点数目和内存的方案,听上去很酷炫,但是调整的依据和公式又在哪呢。

简单的方案才是最好的方案,如下图。换个思路,不要一次性全量推荐了,每次推荐一部分固定数量(比如500万)的用户,切成几批,最后把结果merge起来。固定数量的用户,我们可以测出需要多少内存和节点,这样不需要扩展节点。如果用户量增加,只需要切的批次增加,多算几次,每次计算依然按照固定数量来推荐。

对于离线计算来说,多几个小时的计算时间不是问题,如果用户数量增长到推荐速度确实不够的时候,可以通过增大固定数量来解决(这种情况出现的概率很小,或者几个月后才会出现,不影响可行性)。这样就达到了我们的目的:稳定输出和可扩展。

由于spark没有这样的接口,所以只有自己写了。spark是用scala写的,深入源码用python就不行了,正好顺便把scala学了。重写过程主要是,把recommendProductsForUsers方法中的全量推荐代码复制出来稍加修改,变成自己的推荐方法,然后推荐的时候把userFeature分块去调用重写的推荐方法就可以了。

主要的收获是第一次通过修改开源代码去解决实际生产问题,黑盒变成了白盒。

欢迎关注个人技术公众号,坚持原创

个性化推荐调优:重写spark推荐api的更多相关文章

  1. GC调优在Spark应用中的实践(转载)

    Spark是时下非常热门的大数据计算框架,以其卓越的性能优势.独特的架构.易用的用户接口和丰富的分析计算库,正在工业界获得越来越广泛的应用.与Hadoop.HBase生态圈的众多项目一样,Spark的 ...

  2. 【翻译】Spark 调优 (Tuning Spark) 中文版

    由于Spark自己的调优guidance已经覆盖了很多很有价值的点,因此这里直接翻译一份过来.也作为一个积累. Spark 调优 (Tuning Spark) 由于大多数Spark计算任务是在内存中运 ...

  3. GC调优在Spark应用中的实践[转]

    作者:仲浩   出处:<程序员>电子刊5月B   摘要:Spark立足内存计算,常常需要在内存中存放大量数据,因此也更依赖JVM的垃圾回收机制.与此同时,它也兼容批处理和流式处理,对于程序 ...

  4. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  5. spark调优篇-Spark ON Yarn 内存管理(汇总)

    本文旨在解析 spark on Yarn 的内存管理,使得 spark 调优思路更加清晰 内存相关参数 spark 是基于内存的计算,spark 调优大部分是针对内存的,了解 spark 内存参数有也 ...

  6. Spark学习之路 (十一)SparkCore的调优之Spark内存模型

    摘抄自:https://www.ibm.com/developerworks/cn/analytics/library/ba-cn-apache-spark-memory-management/ind ...

  7. Spark学习之路 (十一)SparkCore的调优之Spark内存模型[转]

    概述 Spark 作为一个基于内存的分布式计算引擎,其内存管理模块在整个系统中扮演着非常重要的角色.理解 Spark 内存管理的基本原理,有助于更好地开发 Spark 应用程序和进行性能调优.本文旨在 ...

  8. Hbase集群搭建及所有配置调优参数整理及API代码运行

    最近为了方便开发,在自己的虚拟机上搭建了三节点的Hadoop集群与Hbase集群,hadoop集群的搭建与zookeeper集群这里就不再详细说明,原来的笔记中记录过.这里将hbase配置参数进行相应 ...

  9. spark调优篇-spark on yarn web UI

    spark on yarn 的执行过程在 yarn RM 上无法直接查看,即 http://192.168.10.10:8088,这对于调试程序很不方便,所以需要手动配置 配置方法 1. 配置 spa ...

随机推荐

  1. Kubernetes 架构(下)- 每天5分钟玩转 Docker 容器技术(121)

    上一节我们讨论了 Kubernetes 架构 Master 上运行的服务,本节讨论 Node 节点. Node 是 Pod 运行的地方,Kubernetes 支持 Docker.rkt 等容器 Run ...

  2. git客户端安装后,访问不到gitsever解决办法

    1,运行 git Bash 客户端 $ cd ~/.ssh 如果没有此目录则创建一个 $ mkdir ~/.ssh 2,在.ssh目录下 $ ssh-keygen -t rsa -C "你的 ...

  3. bootstrap-table操作之“删除”

    最近在做一个新的后台管理系统,在对数据进行操作时需要写一个"删除"功能,如图所示: 下面我来描述一下实现过程中出现的bug以及解决方法: 1.href值为空(href=" ...

  4. [51nod1407]与与与与

    有n个整数,问从他们中取出若干个数字相与之后结果是0的有多少组. 答案比较大,输出对于 1,000,000,007 (1e9+7)取模后的结果. Input 第一行输入一个整数n.(1<=n&l ...

  5. [bzoj2462] [BeiJing2011]矩阵模板

    二维的hash.. 注意n的范围是1000........ 真相似乎是全部输出1就行了233 #include<cstdio> #include<iostream> #incl ...

  6. POJ3264-Balanced Lineup-线段树

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 53721   Accepted: 25244 ...

  7. centos6+cdh5.4.0 离线搭建cdh搭建

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  8. [国嵌攻略][137][DM9000网卡驱动编程]

    DM9000数据发送 DM9000数据发送函数是在/drivers/net/dm9000.c中的dm9000_start_xmit函数 static int dm9000_start_xmit(str ...

  9. 客户端怎么查看SVN的代码库

    安装SVN客户端,比如TortoiseSVN,然后将代码库checkout到本地,或者通过客户端的版本库浏览器直接连接SVN服务器查看代码库的目录结构. 如果SVN服务器端安装的时候是和Apache集 ...

  10. phpmyadmin 自动登录的办法

    在本地开发php项目中,需要配合使用mysql在线管理系统phpmyadmin,因为经常使用,就不想每次都输入密码,所以想办法把用户名密码写入配置文件中,让每次都可以自动登录. 工具/原料   代码编 ...