●Joyoi Dotp 驱逐猪猡
题链:
http://www.joyoi.cn/problem/tyvj-2610
题解:
期望dp,高斯消元
对于每一种到达i点的方案,都存在一个概率p,
令dp[i]表示到达i点的期望次数,那么容易由期望的定义得出:
dp[i]=p1*1+p2*1+p3*1+......(每个概率对应的权值都为1)
如果我们知道了每个点的期望的到达次数,那么在该点期望的爆炸次数=期望的到达次数*P/Q
就可以求出一个SUM=dp[1]+dp[2]+...+dp[N]
然后每个点的爆炸的概率就是(dp[i]*P/Q)/(SUM*P/Q)=dp[i]/SUM
(因为期望的权值都为1,所以概率的比例就等于期望的比例)
这种解法,更容易理解。
http://blog.csdn.net/neither_nor/article/details/52292240
如果在每个点爆炸的概率不同的话,那应该只能像这个拆点的方法做了。
没有SPJ,输出9位小数才能过2333
代码:
#include<bits/stdc++.h>
#define MAXN 305
using namespace std;
const double eps=1e-8;
struct Edge{
int ent;
int to[MAXN*MAXN*2],nxt[MAXN*MAXN*2],head[MAXN];
Edge():ent(2){}
void Adde(int u,int v){
to[ent]=v; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; nxt[ent]=head[v]; head[v]=ent++;
}
}E;
double a[MAXN][MAXN],dp[MAXN],K,SUM;
double *A[MAXN];
int cnt[MAXN];
int N,M,P,Q;
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:-1;
}
void buildequation(){
for(int i=1;i<=N;i++){
a[i][i]=-1;
if(i==1) a[i][N+1]=-1;
for(int e=E.head[i];e;e=E.nxt[e]){
int j=E.to[e];
a[i][j]=K*1.0/cnt[j];
}
}
for(int i=1;i<=N;i++) A[i]=a[i];
}
void Gausselimination(int pos,int i){
if(pos==N+1||i==N+1) return;
for(int j=pos;j<=N;j++) if(dcmp(A[pos][i])!=0){
swap(A[j],A[pos]); break;
}
if(dcmp(A[pos][i])!=0)
for(int j=pos+1;j<=N;j++){
double k=A[j][i]/A[pos][i];
for(int l=i;l<=N+1;l++)
A[j][l]-=k*A[pos][l];
}
Gausselimination(pos+(dcmp(A[pos][i])!=0),i+1);
if(dcmp(A[pos][i])!=0){
for(int l=i+1;l<=N;l++)
dp[i]+=A[pos][l]*dp[l];
dp[i]=A[pos][N+1]-dp[i];
dp[i]=dp[i]/A[pos][i];
}
}
int main(){
ios::sync_with_stdio(0);
cin>>N>>M>>P>>Q;
K=(1-1.0*P/Q);
for(int i=1,u,v;i<=M;i++)
cin>>u>>v,E.Adde(u,v),
cnt[u]++,cnt[v]++;
buildequation();
Gausselimination(1,1);
for(int i=1;i<=N;i++) SUM+=dp[i];
cout<<fixed<<setprecision(9);
for(int i=1;i<=N;i++) cout<<fabs(dp[i]/SUM)<<endl;
return 0;
}
●Joyoi Dotp 驱逐猪猡的更多相关文章
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 563 Solved: 216[Submi ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元
[BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡
首先我们列出转移矩阵$M$,$M_{i, j} = \frac {1 - \frac{p} {q}} {deg[i]}$(i,j之间有边)or $M_{i, j} = 0$(i,j之间没边) 则这个矩 ...
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡
题解: 网上有一种复杂的方法..好像复杂度并没有优势就没看 定义f[i]表示i的期望经过次数,f[i]=sigma{f[j]*p/q/du[j]}+(i==1); 然后高斯消元就可以了 最后求出来的f ...
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...
随机推荐
- Beta阶段敏捷冲刺报告-DAY3
Beta阶段敏捷冲刺报告-DAY3 Scrum Meeting 敏捷开发日期 2017.11.4 会议时间 12:30 会议地点 软工所 参会人员 全体成员 会议内容 当天任务确认,进度调整, 讨论时 ...
- Archlinux安装和使用技巧
一 准备工作 1 文件下载及启动盘制作 文件可以在https://mirrors.ustc.edu.cn/,这是个中科大的镜像网,选择如下: 下载完成后,就是制作一个启动盘,我使用的是Linux下强 ...
- python 闭包计算移动均值及nonlocal的使用
class Averager1(): '''计算移动平均值的类第一种写法''' def __init__(self): self.series = [] def __call__(self,new_v ...
- mongodb 集群分片
分片 在Mongodb里面存在另一种集群,就是分片技术,可以满足MongoDB数据量大量增长的需求 当MongoDB存储海量的数据时,一台机器可能不足以存储数据,也可能不足以提供可接受的读写吞吐量,这 ...
- Linux下ip配置与网络重启
ip配置 //以下ip配置重启失效 sudo ifconfig 192.168.1.1 sudo ifconfig 192.168.1.1 netmask 255.255.255.0 网络重启 //关 ...
- idea搭建springdata+mongodb+maven+springmvc
idea搭建springdata+mongodb+maven+springmvc 今天我们来学习一下SpringData操作MongoDB. 项目环境:IntelliJ IDEA2017+maven3 ...
- Ajax 的onreadystatechange事件注意事项.
<script type="text/javascript"> function createXHR() { var request = false; try { re ...
- 看到一个对CAP简单的解释
一个分布式系统里面,节点组成的网络本来应该是连通的.然而可能因为一些故障,使得有些节点之间不连通了,整个网络就分成了几块区域.数据就散布在了这些不连通的区域中.这就叫分区.当你一个数据项只在一个节点中 ...
- 深度学习之 rnn 台词生成
深度学习之 rnn 台词生成 写一个台词生成的程序,用 pytorch 写的. import os def load_data(path): with open(path, 'r', encoding ...
- Nginx+Tomcat高性能负载均衡集群搭建
转载请注明出处:http://www.cnblogs.com/Joanna-Yan/p/8745794.html Nginx是一个高性能的HTTP服务器/反向代理服务器及电子邮件(IMAP/POP3) ...