●Joyoi Dotp 驱逐猪猡
题链:
http://www.joyoi.cn/problem/tyvj-2610
题解:
期望dp,高斯消元
对于每一种到达i点的方案,都存在一个概率p,
令dp[i]表示到达i点的期望次数,那么容易由期望的定义得出:
dp[i]=p1*1+p2*1+p3*1+......(每个概率对应的权值都为1)
如果我们知道了每个点的期望的到达次数,那么在该点期望的爆炸次数=期望的到达次数*P/Q
就可以求出一个SUM=dp[1]+dp[2]+...+dp[N]
然后每个点的爆炸的概率就是(dp[i]*P/Q)/(SUM*P/Q)=dp[i]/SUM
(因为期望的权值都为1,所以概率的比例就等于期望的比例)
这种解法,更容易理解。
http://blog.csdn.net/neither_nor/article/details/52292240
如果在每个点爆炸的概率不同的话,那应该只能像这个拆点的方法做了。
没有SPJ,输出9位小数才能过2333
代码:
#include<bits/stdc++.h>
#define MAXN 305
using namespace std;
const double eps=1e-8;
struct Edge{
int ent;
int to[MAXN*MAXN*2],nxt[MAXN*MAXN*2],head[MAXN];
Edge():ent(2){}
void Adde(int u,int v){
to[ent]=v; nxt[ent]=head[u]; head[u]=ent++;
to[ent]=u; nxt[ent]=head[v]; head[v]=ent++;
}
}E;
double a[MAXN][MAXN],dp[MAXN],K,SUM;
double *A[MAXN];
int cnt[MAXN];
int N,M,P,Q;
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:-1;
}
void buildequation(){
for(int i=1;i<=N;i++){
a[i][i]=-1;
if(i==1) a[i][N+1]=-1;
for(int e=E.head[i];e;e=E.nxt[e]){
int j=E.to[e];
a[i][j]=K*1.0/cnt[j];
}
}
for(int i=1;i<=N;i++) A[i]=a[i];
}
void Gausselimination(int pos,int i){
if(pos==N+1||i==N+1) return;
for(int j=pos;j<=N;j++) if(dcmp(A[pos][i])!=0){
swap(A[j],A[pos]); break;
}
if(dcmp(A[pos][i])!=0)
for(int j=pos+1;j<=N;j++){
double k=A[j][i]/A[pos][i];
for(int l=i;l<=N+1;l++)
A[j][l]-=k*A[pos][l];
}
Gausselimination(pos+(dcmp(A[pos][i])!=0),i+1);
if(dcmp(A[pos][i])!=0){
for(int l=i+1;l<=N;l++)
dp[i]+=A[pos][l]*dp[l];
dp[i]=A[pos][N+1]-dp[i];
dp[i]=dp[i]/A[pos][i];
}
}
int main(){
ios::sync_with_stdio(0);
cin>>N>>M>>P>>Q;
K=(1-1.0*P/Q);
for(int i=1,u,v;i<=M;i++)
cin>>u>>v,E.Adde(u,v),
cnt[u]++,cnt[v]++;
buildequation();
Gausselimination(1,1);
for(int i=1;i<=N;i++) SUM+=dp[i];
cout<<fixed<<setprecision(9);
for(int i=1;i<=N;i++) cout<<fabs(dp[i]/SUM)<<endl;
return 0;
}
●Joyoi Dotp 驱逐猪猡的更多相关文章
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 [高斯消元 概率DP]
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 题意:一个炸弹从1出发p/q的概率爆炸,否则等概率走向相邻的点.求在每个点爆炸的概率 高斯消元求不爆炸到达每个点的概率,然后在一个点爆炸就 ...
- BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元
BZOJ_1778_[Usaco2010 Hol]Dotp 驱逐猪猡_概率DP+高斯消元 题意: 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 3 ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡
1778: [Usaco2010 Hol]Dotp 驱逐猪猡 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 563 Solved: 216[Submi ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡 期望DP+高斯消元
[BZOJ1778][Usaco2010 Hol]Dotp 驱逐猪猡 Description 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300 ...
- 【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元
题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两 ...
- BZOJ1778 [Usaco2010 Hol]Dotp 驱逐猪猡
首先我们列出转移矩阵$M$,$M_{i, j} = \frac {1 - \frac{p} {q}} {deg[i]}$(i,j之间有边)or $M_{i, j} = 0$(i,j之间没边) 则这个矩 ...
- bzoj 1778 [Usaco2010 Hol]Dotp 驱逐猪猡(高斯消元)
[题意] 炸弹从1开始运动,每次有P/Q的概率爆炸,否则等概率沿边移动,问在每个城市爆炸的概率. [思路] 设M表示移动一次后i->j的概率.Mk为移动k次后的概率,则有: Mk=M^k 设S= ...
- 【BZOJ1778】[Usaco2010 Hol]Dotp 驱逐猪猡
题解: 网上有一种复杂的方法..好像复杂度并没有优势就没看 定义f[i]表示i的期望经过次数,f[i]=sigma{f[j]*p/q/du[j]}+(i==1); 然后高斯消元就可以了 最后求出来的f ...
- 【BZOJ】1778: [Usaco2010 Hol]Dotp 驱逐猪猡
[题意]给定无向图,炸弹开始在1,在每个点爆炸概率Q=p/q,不爆炸则等概率往邻点走,求在每个点爆炸的概率.n<=300. [算法]概率+高斯消元 [题解]很直接的会考虑假设每个点爆炸的概率,无 ...
随机推荐
- mongodb 复制(副本集)
复制(副本集) 什么是复制 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并可以保证数据的安全性 复制还允许从硬件故障和服务中断中恢复数据 为什么要复制 数据备份 数据灾 ...
- Python内置函数(12)——str
英文文档: class str(object='') class str(object=b'', encoding='utf-8', errors='strict') Return a string ...
- maven入门(6)maven的生命周期
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site. 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和 ...
- 面向对象中Object常用属性总结
学完Object属性,自己总结一些常用是Object常用属性. Object.prototype:属性表示Object的原型对象. 属性: Object.prototype.constructor:特 ...
- Django知识总结
一.什么是web框架? 框架,即framework,特指为解决一个开放性问题而设计的具有一定约束性的支撑结构,使用框架可以帮你快速开发特定的系统,简单地说,就是你用别人搭建好的舞台来做表演. web应 ...
- Codeforces Round #436 (Div. 2) B. Polycarp and Letters
http://codeforces.com/contest/864/problem/B 题意: 给出一个字符串,要求找到一个集合S,使得从S中选出的所有数,在这些数的位置上的字母全部为小写且是不同的字 ...
- POJ-1700 Crossing River---过河问题(贪心)
题目链接: https://vjudge.net/problem/POJ-1700 题目大意: 有N个人要渡河,但是只有一艘船,船上每次最多只能载两个人,渡河的速度由两个人中较慢的那个决定,小船来回载 ...
- scrapy.Spider的属性和方法
scrapy.Spider的属性和方法 属性: name:spider的名称,要求唯一 allowed_domains:允许的域名,限制爬虫的范围 start_urls:初始urls custom_s ...
- pyspider爬取TripAdvisor
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Created on 2017-06-11 10:10:53 # Project: london f ...
- jacascript DOM节点——节点获取与选择器API
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! DOM 操作必须等待 HTML 加载完毕之后,才可以获取节点:有两种方法: 把 script 标签放到代码 ...