hdu2669与hdu1576(扩展欧几里德)
模板:
int Extend_Euclid(int a, int b, int &x, int &y){
if(b == 0){
x = 1;
y = 0;
return a;
}
else{
int gcd,t;
gcd = Extend_Euclid(b, a%b, x, y);
t = x;
x = y;
y = t - (a / b) * y;
return gcd;
}
}
详见:http://www.cnblogs.com/yuelingzhi/archive/2011/08/13/2137582.html
hdu 2669
10 44
34 79
sorry
7 -3
求 a*x + b*y = 1。输出一个正数x,一个y。
直接套模板,最后对x < 0时处理一下,∵a*x + b*y = 1,所以x+=b,y-=a来保持值不变
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <cmath>
#include <algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int N=100050; ll ex_gcd(ll a,ll b,ll &x,ll &y) //扩展欧几里德
{
if(b ==0)
{
x = 1;y = 0;
return a;
}
else
{
ll t = ex_gcd(b,a%b,y,x);
y = y - x*(a/b);
return t;
}
} int main()
{
ll a,b;
while(scanf("%I64d%I64d",&a,&b)!= EOF)
{
ll x,y;
ll tmp = ex_gcd(a,b,x,y);
if(1 % tmp)
printf("sorry\n");
else
{
while(x < 0){
x += b;
y -= a;
}
printf("%I64d %I64d\n",x,y);
}
}
return 0;
}
hdu 1576
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
1000 53
87 123456789
6060
A % B = 0,A= Bx;
n = A%9973 , A = 9973y + n; Bx -9973y = n;
GCD(b,9973) = 1, b*x1 + 9973y1 = 1, b*x1*n + 9973 *(n*y1) = n
∴ x = n*x1, x1可以通多exGCD算出
最后的x通过 (x % MOD + MOD)%MOD 防止出现负数
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <cmath>
#include <algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int N=100050; void ex_gcd(int a,int b,int &x,int &y) //扩展欧几里德
{
if(b ==0)
{
x = 1;y = 0;
}
else
{
ex_gcd(b,a%b,y,x);
y = y - x*(a/b);
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,B;
scanf("%d%d",&n,&B);
int x,y;
ex_gcd(B,9973,x,y);
x *= n; printf("%d\n",(x%9973 + 9973)% 9973); //再加上一次,防止负
}
return 0;
}
hdu2669与hdu1576(扩展欧几里德)的更多相关文章
- hdu1576 扩展欧几里德 A/B
A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU2669 Romantic 扩展欧几里德 对我来说有陷阱
这道题对我来说有陷阱虽说是赤果果的扩展欧几里德,看样子基本攻还是不够哈,基本功夫一定要好,准备每天上那种洗脑课时分 多看看数论书,弥补一下 自己 狗一样的基础, 这道题用到了一个性质: 对于不定整数 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- [BZOJ1407][NOI2002]Savage(扩展欧几里德)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- 51nod 1352 扩展欧几里德
给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...
- CF 7C. Line(扩展欧几里德)
题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
随机推荐
- Beta预备会议
1. 讨论组长是否重选的议题和结论. 我们小组决定组长更换为林洋洋同学,他Web开发经验比较丰富,对任务的分配会更加明确,由于上一阶段中存在进度偏慢的问题,我们希望在Beta阶段通过更好的分工安排来保 ...
- Alpha冲刺第一天
Alpha冲刺第一天 站立式会议 项目进展 项目的第一天,主要工作是对项目的开发进行规划,以及将规划的成果转化为燃尽图与博客文章.依据项目需求分析报告与开题报告中已经完成的设计任务和项目规划,我们将系 ...
- 静态关键字static用法。
static的特点:1,static是一个修饰符,用于修饰成员.2,static修饰的成员被所有的对象所共享.3,static优先于对象存在,因为static的成员随着类的加载就已经存在了. 4,st ...
- (function(root,factory){})(this,function($){}) 一个立即执行的匿名函数自调
因为新公司用到ocx 我就开始看原来的代码 无意中发现这个 可能原来比较low吗(虽然现在也很low吧)没发现这个东东 还可以这样写 于是乎我开始了探索 完整代码如下 HTML <div id= ...
- Python之旅.第三章.函数4.01/4.02
一.三元表达式 #普通的判断大小函数def max2(x,y): if x > y: return x else: return yres=max2(10,11)print(res)x=12y= ...
- SQL Server 实现递归查询
基础数据/表结构 Sql 语句 ;With cte(id,pid,TName)As ( Select id,pid,TName Union All Select B.i ...
- python 面向对象进阶之内置方法
一 isinstance(obj,cls)和issubclass(sub,super) 1.1,isinstance(obj,cls)检查是否obj是否是类 cls 的对象 class Foo(obj ...
- js常用的数组方法
1.创建数组的基本方法: 1.1 空数组 var obj=new Array(); 1.2 指定长度数组 var obj=new Array(size); ...
- Linux下wget获取ftp下目录下文件
如果某个目录下有一个文件可以使用ftp命令: get xxx 如果是某个目录下有多个文件(且不需要获取目录下子文件夹下的内容): mget * 如果是某个目录下有子目录希望获取所有子目录: wget ...
- 关于terraform的状态管理
我们想在aws创建3台主机,使用ansible和terraform都是可以实现的. 用ansible可能是这样子的: - ec2: count: 10 image: ami-40d281120 ins ...