模板:

int Extend_Euclid(int a, int b, int &x, int &y){
        if(b == 0){
            x = 1;

y = 0;
            return a;
        }
        else{
            int gcd,t;
            gcd = Extend_Euclid(b, a%b, x, y);
            t = x;
            x = y;
            y = t - (a / b) * y;
            return gcd;
        }

}

详见:http://www.cnblogs.com/yuelingzhi/archive/2011/08/13/2137582.html

hdu 2669

Sample Input
77 51
10 44
34 79
 
Sample Output
2 -3
sorry
7 -3

求 a*x + b*y = 1。输出一个正数x,一个y。

直接套模板,最后对x < 0时处理一下,∵a*x + b*y = 1,所以x+=b,y-=a来保持值不变

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <cmath>
#include <algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int N=100050; ll ex_gcd(ll a,ll b,ll &x,ll &y) //扩展欧几里德
{
if(b ==0)
{
x = 1;y = 0;
return a;
}
else
{
ll t = ex_gcd(b,a%b,y,x);
y = y - x*(a/b);
return t;
}
} int main()
{
ll a,b;
while(scanf("%I64d%I64d",&a,&b)!= EOF)
{
ll x,y;
ll tmp = ex_gcd(a,b,x,y);
if(1 % tmp)
printf("sorry\n");
else
{
while(x < 0){
x += b;
y -= a;
}
printf("%I64d %I64d\n",x,y);
}
}
return 0;
}

  

hdu 1576

Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 
Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 
Output
对应每组数据输出(A/B)%9973。
 
Sample Input
2
1000 53
87 123456789
 
Sample Output
7922
6060

A % B = 0,A= Bx;

n = A%9973  , A  = 9973y + n;   Bx -9973y  = n;

GCD(b,9973) = 1,      b*x1 + 9973y1 = 1,    b*x1*n + 9973 *(n*y1) = n

∴ x = n*x1,  x1可以通多exGCD算出

最后的x通过    (x % MOD + MOD)%MOD 防止出现负数

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
#include <cmath>
#include <algorithm>
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int N=100050; void ex_gcd(int a,int b,int &x,int &y) //扩展欧几里德
{
if(b ==0)
{
x = 1;y = 0;
}
else
{
ex_gcd(b,a%b,y,x);
y = y - x*(a/b);
}
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,B;
scanf("%d%d",&n,&B);
int x,y;
ex_gcd(B,9973,x,y);
x *= n; printf("%d\n",(x%9973 + 9973)% 9973); //再加上一次,防止负
}
return 0;
}

  

hdu2669与hdu1576(扩展欧几里德)的更多相关文章

  1. hdu1576 扩展欧几里德 A/B

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  2. HDU2669 Romantic 扩展欧几里德 对我来说有陷阱

    这道题对我来说有陷阱虽说是赤果果的扩展欧几里德,看样子基本攻还是不够哈,基本功夫一定要好,准备每天上那种洗脑课时分  多看看数论书,弥补一下 自己 狗一样的基础, 这道题用到了一个性质: 对于不定整数 ...

  3. (扩展欧几里德算法)zzuoj 10402: C.机器人

    10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...

  4. [BZOJ1407][NOI2002]Savage(扩展欧几里德)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1407 分析: m,n范围都不大,所以可以考虑枚举 先枚举m,然后判定某个m行不行 某个 ...

  5. 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm

    欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...

  6. 51nod 1352 扩展欧几里德

    给出N个固定集合{1,N},{2,N-1},{3,N-2},...,{N-1,2},{N,1}.求出有多少个集合满足:第一个元素是A的倍数且第二个元素是B的倍数. 提示: 对于第二组测试数据,集合分别 ...

  7. CF 7C. Line(扩展欧几里德)

    题目链接 AC了.经典问题,a*x+b*y+c = 0整数点,有些忘记了扩展欧几里德,复习一下. #include <cstdio> #include <iostream> # ...

  8. poj2142-The Balance(扩展欧几里德算法)

    一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...

  9. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

随机推荐

  1. python实现线性回归

    参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处 ...

  2. mobiscroll2.5.4 日期组件

    <script type="text/javascript"> function setCss(o) { $('input:jqmData(role="dat ...

  3. 《Language Implementation Patterns》之访问&重写语法树

    每个编程的人都学习过树遍历算法,但是AST的遍历并不是开始想象的那么简单.有几个因素会影响遍历算法:1)是否拥有节点的源码:2)是否子节点的访问方式是统一的:3)ast是homogeneous或het ...

  4. SQL语句取多列的最小值(排除0)

    经常遇到获取数据表中多个列的最小值和最大值,例如: 获取这 4个价格的最小值和最大值: SELECT( SELECT min(minPrice) FROM ( VALUES (IIF(MarketSi ...

  5. MySQL Group Relication 部署环境入门篇

      一:环境介绍   cenos 6.7 版本 数据库的版本5.7.19 二:部署规划单机多实例的部署   端口号 数据目录  group_repplicatoon 通信接口   3307 /data ...

  6. Mego开发文档 - 建模高级主题

    建模高级主题 在建模过程中我们还有许多其他情况,这里列出本框架中的有用特性来用于解决此类问题. 函数映射 我们可以将指定的CLR函数映射到数据库中的系统函数或自定义函数,该特性用于补充框架中未提供的数 ...

  7. ajax中设置contentType: “application/json”的作用

    最近在做项目交互的时候,刚开始向后台传递数据返回415,后来百度添加了 contentType:"application/json"之后返回400,然后把传输的数据格式改为json ...

  8. Leetcode:Two Sum

    原题:https://leetcode.com/problems/two-sum/ 尝试了两种方法: 方法一: var twoSum = function(nums, target) { for(va ...

  9. 使用TortoiseSVN打Tag

    参考了 https://blog.csdn.net/liuzx32/article/details/9123401. 值得注意的点是: 选择路径的时候,不要先点进去自己建好叶子节点路径再选择该路径,会 ...

  10. powerdesigner将name的名字赋给comment

    1 PowerDesigner中批量根据对象的name生成comment的脚本 执行方法:Open PDM -- Tools -- Execute Commands -- Run Script Vb ...