【BZOJ1911】【APIO2010】特别行动队(斜率优化,动态规划)
【BZOJ1911】【APIO2010】特别行动队
题面
Description
你有一支由 n 名预备役士兵组成的部队,士兵从 1 到 n 编号, 要将他们拆分成若干特别行动队调入战场。出于默契的考虑,同一支特别行动队中队员的编号应该连续,即为形如(i, i + 1, …, i + k)的序列。
编号为 i 的士兵的初始战斗力为 xi ,一支特别行动队的初始战斗力 x 为队内士兵初始战斗力之和,即 X = Xi + Xi+1 + … + Xi+k。通过长期的观察,你总结出一支特别行动队的初始战斗力 x 将按如下经验公式修正为 x': x' = ax^2 + bx + c, 其中 a, b, c 是已知的系数( a < 0)。
作为部队统帅,现在你要为这支部队进行编队,使得所有特别行动队修正后战斗力之和最大。 试求出这个最大和。
例如, 你有 4 名士兵, x1 = 2, x2 = 2, x3 = 3, x4 = 4。经验公式中的参数为 a = –1,b = 10, c = –20。此时,最佳方案是将士兵组成 3 个特别行动队:第一队包含士兵1 和士兵 2,第二队包含士兵 3,第三队包含士兵 4。特别行动队的初始战斗力分别为 4, 3, 4,修正后的战斗力分别为 4, 1, 4。修正后的战斗力和为 9,没有其它方案能使修正后的战斗力和更大。
Input
输入由三行组成。 第一行包含一个整数 n, 表示士兵的总数。第二行包含三个整数 a, b, c, 经验公式中各项的系数。第三行包含 n 个用空格分隔的整数 x1,x2, …, xn,分别表示编号为 1, 2, …, n 的士兵的初始战斗力。
Output
输出一个整数,表示所有特别行动队修正后战斗力之和的最大值。
Sample Input
4
-1 10 -20
2 2 3 4
Sample Output
9
Hint
20%的数据中, n ≤ 1000;
50%的数据中, n ≤ 10,000;
100%的数据中, 1 ≤ n ≤ 1,000,000, –5 ≤ a ≤ –1, |b| ≤ 10,000,000, |c| ≤10,000,000, 1 ≤ xi ≤ 100。
题解
如果公式挂了到CSDN上去看
又是一道斜率优化的DP题目
首先还是写出一个\(O(n^{2})\)的DP
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=max(f[i],f[j]+F(c[i]-c[j]));
其中\(F(x)\)是题目中的二次函数\(c[i]\)是前缀和
还是和之前是一样的
假设\(j\)的转移优于\(k\)
那么就有
\]
又有
\]
直接带入得到
\]
右边同理
然后两边同时减掉一部分得
\]
移项得到
\]
除过去搞一下
\]
然后就可以斜率优化直接搞了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
using namespace std;
#define ll long long
#define MAX 1010000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll A,B,C;
ll n,c[MAX];
ll F(ll x){return 1LL*A*x*x+1LL*B*x+C;}
ll f[MAX];
ll s[MAX],h,t;
ll sqr(ll x){return x*x;}
double count(ll j,ll k)
{
return ((f[j]-B*c[j]+A*sqr(c[j]))-(f[k]-B*c[k]+A*sqr(c[k])))/(2.0*A*(c[j]-c[k]));
}
int main()
{
n=read();A=read();B=read();C=read();
for(int i=1;i<=n;++i)c[i]=c[i-1]+read();
for(int i=1;i<=n;++i)f[i]=-1e18;
/*
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
f[i]=max(f[i],f[j]+F(c[i]-c[j]));
*/
for(int i=1;i<=n;++i)
{
while(h<t&&count(s[h],s[h+1])<=c[i]*1.0)h++;
int get=s[h];
f[i]=f[get]+F(c[i]-c[get]);
while(h<t&&count(s[t-1],s[t])>=count(s[t],i))t--;
s[++t]=i;
}
printf("%lld\n",f[n]);
return 0;
}
【BZOJ1911】【APIO2010】特别行动队(斜率优化,动态规划)的更多相关文章
- bzoj1911[Apio2010]特别行动队 斜率优化dp
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 5057 Solved: 2492[Submit][Statu ...
- bzoj1911 [Apio2010]特别行动队——斜率优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...
- [Bzoj1911][Apio2010]特别行动队(斜率优化)
题目链接 斜率优化的经典模型,将序列分成若干段,每段有一个权值计算方法,求权值和最大/小 暴力的dp $O(n^{2})$ dp[i]为1-i的序列的最优解.sum[i]为前缀和,$D(i)=ax^{ ...
- [APIO2010]特别行动队 --- 斜率优化DP
[APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...
- BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 4142 Solved: 1964[Submit][Statu ...
- bzoj 1911: [Apio2010]特别行动队 -- 斜率优化
1911: [Apio2010]特别行动队 Time Limit: 4 Sec Memory Limit: 64 MB Description Input Output Sample Input 4 ...
- APIO2010 特别行动队 & 斜率优化DP算法笔记
做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...
- 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP
想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...
- 洛谷P3628 [APIO2010]特别行动队 斜率优化
裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...
- [bzoj1911][Apio2010特别行动队] (动态规划+斜率优化)
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[ ...
随机推荐
- MySQL创建用户与授权
一. 创建用户 命令: CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明: username:你将创建的用户名 host:指定该用户 ...
- 分享:Python中的位运算符
按位运算符是把数字看作二进制来进行计算的.用的不太多,简单了解. 下表中变量 a 为 60,b 为 13二进制格式如下: a = 0011 1100 b = 0000 1101 a&b = 0 ...
- Redis进阶实践之十三 Redis的Redis-trib.rb文件详解
一.简介 事先说明一下,本篇文章不涉及对redis-trib.rb源代码的分析,只是从使用的角度来阐述一下,对第一次使用的人来说很重要.redis-trib.rb是redis官方推出的管理re ...
- 新人学习selenium哪些资源比较有帮助?
为什么学习selenium? selenium现在基本上成了页面自动化测试的标配,具体理由我在selenium 3.0发布这篇文章里已经说明过了.当一个东西成为标准以后,那么它的能量和潜力都是巨大的. ...
- django新手第一课
django是基于python的一个web框架,大致结构如下: 在pycharm,python2.7,django1.8,mysql都装好的情况下,现在开始django的初试: 一.基础启动djang ...
- Yaf框架的配置
http://www.laruence.com/manual/yaf.ini.html //先看一下惠新宸鸟哥yaf官网的配置说明 我们可以在php.ini中定义开发环节配置项,把本地开发设置成dev ...
- Laravel框架中Form表单Get请求搜索(在此感谢[https://simon8.com])
首先看一下HTML部分的Form表单 <form role="search" method="get" id="searchform" ...
- ICQ
我一直都想编一个自己的聊天软件,像QQ那种:最近有时间我就自己编了一个.编写的过程中收获很大…… 现在拿出来跟大家分享,有兴趣的朋友可以和我交流交流. 先给大家看一下效果: 启动服务器: 再给大家看一 ...
- uva1395 枚举不同区间的最小生成树
枚举起点,求最小生成树.如果当前不能实现n个点连通,直接不再枚举. AC代码: #include<cstdio> #include<algorithm> using names ...
- 压缩tar命令
option z表示压缩,所以才有后面的.gz, c表示创建这个压缩包,v是可视,能看到其打包和压缩的过程,f表示文件 zcvf 命令格式为 先压缩后跟压缩的目录 tar zcvf /home/xia ...