【Luogu1393】动态逆序对(CDQ分治)

题面

题目描述

对于给定的一段正整数序列,我们定义它的逆序对的个数为序列中ai>aj且i < j的有序对(i,j)的个数。你需要计算出一个序列的逆序对组数及其删去其中的某个数的逆序对组数。

输入输出格式

输入格式:

第一行,两个数n,m,表示序列中有n个数,要删去m个数

第二行n个数,表示给定的序列。

第三行m个数,第i个数di表示要删去原序列中的第di个数。

输出格式:

一行m+1个数。第一个数表示给定序列的逆序对组数,第i+1个数表示删去第di个数后序列的逆序对组数(删去的数不再恢复)

输入输出样例

输入样例#1:

6 3

5 4 2 6 3 1

2 1 4

输出样例#1:

11 7 4 2

说明

对于20%的数据,n≤2500

对于另30%的数据,m=0

对于100%的数据,n≤40000,m≤n/2,且保证第二行n个数互不相同,第三行m个数互不相同

题解

之前不是说过要写一遍CDQ分治吗??

在这里说的

可是,当你把上面的代码兴高采烈的Copy到洛谷上之后

你就会直接WA了

因为,题目还是有点不同的(仔细读题)

区别一:这题不是排列,要离散化

区别二:这题删掉的不是数字,而是位置

好了回归正题,讲讲CDQ分治怎么写

首先,给所有删掉的数编个号,就按照删去的顺序来吧

没有删掉的数就编个INF吧

那么,删掉这个数之后,减少的逆序对对数是:

对于\(j\in[1,j]\)

\(t[i]<t[j]\),其中t是删除的编号

并且

\(i<j,a[i]>a[j]\)

或者

\(i>j,a[i]<a[j]\)

所以,删除的编号直接sort搞完

剩下的两维CDQ分治

于是,发现这个玩意是一个三维偏序

所以之前写过的树状数组套平衡树当然也可以做啦

但是,CDQ分治还是要会嗷。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 50000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,S[MAX],a[MAX],b[MAX],c[MAX],d[MAX];
long long ans;
int lowbit(int x){return x&(-x);}
void Add(int x,int w){while(x<=n)c[x]+=w,x+=lowbit(x);}
int getsum(int x){int ret=0;while(x)ret+=c[x],x-=lowbit(x);return ret;}
struct Node
{
int t,p,a;
int s;
}t[MAX];
bool operator<(Node a,Node b){return a.t<b.t;}
bool cmp(Node a,Node b){return a.p<b.p;}
void CDQ(int l,int r)
{
if(l==r)return;
int mid=(l+r)>>1;
CDQ(l,mid);CDQ(mid+1,r);
sort(&t[l],&t[mid+1],cmp);
sort(&t[mid+1],&t[r+1],cmp);
int j=mid;
for(int i=l;i<=mid;++i)
{
while(j<r&&t[j+1].p<t[i].p)++j,Add(t[j].a,1);
t[i].s+=getsum(n)-getsum(t[i].a);
}
for(int i=mid+1;i<=j;++i)Add(t[i].a,-1);
j=r+1;
for(int i=mid;i>=l;--i)
{
while(j>mid+1&&t[j-1].p>t[i].p)--j,Add(t[j].a,1);
t[i].s+=getsum(t[i].a-1);
}
for(int i=r;i>=j;--i)Add(t[i].a,-1);
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)S[i]=a[i]=read();
sort(&S[1],&S[n+1]);
for(int i=1;i<=n;++i)b[a[i]=lower_bound(&S[1],&S[n+1],a[i])-S]=i;
for(int i=n;i;i--)ans+=getsum(a[i]),Add(a[i],1);
for(int i=1;i<=n;++i)t[i].t=n+1,t[i].p=i,t[i].a=a[i];
for(int i=1;i<=m;++i)
{
d[i]=read();
t[d[i]].t=i;
}
sort(&t[1],&t[n+1]);
memset(c,0,sizeof(c));
CDQ(1,n);
for(int i=1;i<=n;++i)c[t[i].p]=t[i].s;
printf("%lld ",ans);
for(int i=1;i<=m;++i)
printf("%lld ",ans=ans-c[d[i]]);
return 0;
}

【Luogu1393】动态逆序对(CDQ分治)的更多相关文章

  1. P3157 动态逆序对 CDQ分治

    动态逆序对 CDQ分治 传送门:https://www.luogu.org/problemnew/show/P3157 题意: 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对 ...

  2. [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...

  3. BZOJ 3295 动态逆序对 | CDQ分治

    BZOJ 3295 动态逆序对 这道题和三维偏序很类似.某个元素加入后产生的贡献 = time更小.pos更小.val更大的元素个数 + time更小.pos更大.val更小的元素个数. 分别用类似C ...

  4. 【BZOJ3295】[Cqoi2011]动态逆序对 cdq分治

    [BZOJ3295][Cqoi2011]动态逆序对 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依 ...

  5. bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)

    3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...

  6. BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治

    题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 1 ...

  7. [CQOI2011]动态逆序对 CDQ分治

    洛谷上有2道相同的题目(基本是完全相同的,输入输出格式略有不同) ---题面--- ---题面--- CDQ分治 首先由于删除是很不好处理的,所以我们把删除改为插入,然后输出的时候倒着输出即可 首先这 ...

  8. 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治

    题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...

  9. BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]

    RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...

  10. BZOJ3295:[CQOI2011]动态逆序对(CDQ分治)

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

随机推荐

  1. [Python Study Notes]实现对鼠标控制

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  2. .NET Core UI框架Avalonia

    .NET Core UI框架Avalonia,Avalonia是一个基于WPF XAML的跨平台UI框架,并支持多种操作系统:Windows(.NET Framework,.NET Core),Lin ...

  3. 一个客户端一键安装环境和服务的shell脚本

    #!/bin/bash basepath=$(cd `dirname $0`; pwd)SHELL_DIR="${basepath}/shell"PACKAGE_DIR=" ...

  4. Android Native App自动化测试实战讲解(上)(基于python)

    1.Native App自动化测试及Appuim框架介绍 android平台提供了一个基于java语言的测试框架uiautomator,它一个测试的Java库,包含了创建UI测试的各种API和执行自动 ...

  5. 高性能javascript笔记

    ----------------------------------------------------------- 第一章 加载和执行 ------------------------------ ...

  6. 老男孩Python全栈开发(92天全)视频教程 自学笔记21

    day21课程内容:  json: #序列化 把对象(变量)从内存中 编程可存储和可传输的过程 称为序列化import jsondic={'name':'abc','age':18}with open ...

  7. LOJ6003 - 「网络流 24 题」魔术球

    原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...

  8. BZOJ3223/洛谷P3391 - 文艺平衡树

    BZOJ链接 洛谷链接 题意 模板题啦~2 代码 //文艺平衡树 #include <cstdio> #include <algorithm> using namespace ...

  9. uploadify上传文件(2)--基础语法

    隔了好久,因为最近搬家,离开从小生活的城市,来到杭州.找工作.找房子等诸多事宜耽误了这篇文章许久.今天难得闲暇在旅馆中完成uploadify上传文件系列的第二篇--uploadify使用的基础语法. ...

  10. python产生随机值-random模块

    import random产生随机值的模块random.random() #获取一个随机的浮点值;help(random.random) #查看随机范围:0-1;random.uniform(1,10 ...