简单线性回归

    1、研究一个自变量(X)和一个因变量(y)的关系

       简单线性回归模型定义:y=β0+β1x+ε

    简单线性回归方程:E(y)=β01x

      其中:

      β0为回归线的截距

      β1为回归线的斜率

      通过训练数据,求取出估计参数建立的直线方程:

      实际编程时,主要是根据已知训练数据,估计出β0和β1的值b0和b1

    2、举例:

        

     实际代码:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 1].values #将数据分成训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 1/3, random_state = 0) #Simple Linear Regression对应机器;拟合对应学习
#创建简单回归器,并且用训练集拟合简单线性回归器
from sklearn.linear_model import LinearRegression#导入类sklearn库里面的LinearRegression线性回归
regressor = LinearRegression()#创建对象
regressor.fit(X_train, y_train)#用训练集的数据拟合 #预测测试集的因变量为多少,并且让预测结果和测试结果进行比较
y_pred = regressor.predict(X_test)#y_pred预测结果,regressor回归器 #画出训练集的实际结果以及回归器的预测结果
plt.scatter(X_train, y_train, color = 'red')#第一个:x轴,自变量;第二个:y轴的值;第三个:为点涂色
plt.plot(X_train, regressor.predict(X_train), color = 'blue')#回归器的预测结果,以线的方式表示;第一个:x轴,自变量;第二个:y轴对应的值,及回归器的预测结果;第三个:为线涂色
plt.title('Salary VS Experience (training set)')#为图像加标题
plt.xlabel('Years of Experience')#为x轴加标签
plt.ylabel('Salary')#为y轴加标签
plt.show()#显示图像 #画出测试集的实际结果以及回归器的预测结果
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')#回归器针对训练集做拟合的,所以regressor.predict(X_train)无需改动
plt.title('Salary VS Experience (test set)')
plt.xlabel('Years of Experience')
plt.ylabel('Salary')
plt.show()

   

  红色表示实际结果,蓝色表示预测结果

    

Python----简单线性回归的更多相关文章

  1. day-12 python实现简单线性回归和多元线性回归算法

    1.问题引入  在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.一个带有一个自变 ...

  2. Python回归分析五部曲(一)—简单线性回归

    回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高: 回归分析整体逻辑 回归分析( ...

  3. 机器学习:单元线性回归(python简单实现)

    文章简介 使用python简单实现机器学习中单元线性回归算法. 算法目的 该算法核心目的是为了求出假设函数h中多个theta的值,使得代入数据集合中的每个x,求得的h(x)与每个数据集合中的y的差值的 ...

  4. 简单线性回归(梯度下降法) python实现

    grad_desc .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { bord ...

  5. 简单线性回归(最小二乘法)python实现

      简单线性回归(最小二乘法)¶   0.引入依赖¶ In [7]: import numpy as np import matplotlib.pyplot as plt   1.导入数据¶ In [ ...

  6. 机器学习经典算法具体解释及Python实现--线性回归(Linear Regression)算法

    (一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測, ...

  7. 机器学习(2):简单线性回归 | 一元回归 | 损失计算 | MSE

    前文再续书接上一回,机器学习的主要目的,是根据特征进行预测.预测到的信息,叫标签. 从特征映射出标签的诸多算法中,有一个简单的算法,叫简单线性回归.本文介绍简单线性回归的概念. (1)什么是简单线性回 ...

  8. 机器学习——Day 2 简单线性回归

    写在开头 由于某些原因开始了机器学习,为了更好的理解和深入的思考(记录)所以开始写博客. 学习教程来源于github的Avik-Jain的100-Days-Of-MLCode 英文版:https:// ...

  9. Python简单爬虫入门三

    我们继续研究BeautifulSoup分类打印输出 Python简单爬虫入门一 Python简单爬虫入门二 前两部主要讲述我们如何用BeautifulSoup怎去抓取网页信息以及获取相应的图片标题等信 ...

  10. Python简单爬虫入门二

    接着上一次爬虫我们继续研究BeautifulSoup Python简单爬虫入门一 上一次我们爬虫我们已经成功的爬下了网页的源代码,那么这一次我们将继续来写怎么抓去具体想要的元素 首先回顾以下我们Bea ...

随机推荐

  1. 单例模式的优化之路(java)

    1.概述 最近在优化公司以前老项目的代码时,发现有些类的代码频繁地创建和销毁对象,资源消耗比较严重.针对这些做了一些优化,改用单例模式,避免频繁的创建和销毁对象,说起单例模式,相信每个人都会写,接下来 ...

  2. 1.Flask URL和视图

    1.1.第一个flask程序 from flask import Flask #创建一个Flask对象,传递__name__参数进去 app = Flask(__name__) #url与视图映射 @ ...

  3. 【反编译系列】四、反编译so文件(IDA_Pro)

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 概述 安卓应用程序的开发语言是java,但是由于java层的代码很容易被反编译,而反编译c/c++程序的难度比较大,所以现在很多安卓应用程 ...

  4. SVN问题解决--Attempted to lock an already-locked dir

    今天上午更新uap(uap就是基于eclipse开发的软件,可以当eclipse来使用)上的代码时,发现在svn上更新不了,一直报这个Attempted to lock an already-lock ...

  5. Linux高级命令进阶(week1_day2)--技术流ken

    输出重定向 场景:一般命令的输出都会显示在终端中,有些时候需要将一些命令的执行结果想要保存到文件中进行后续的分析/统计,则这时候需要使用到的输出重定向技术. >:覆盖输出,会覆盖掉原先的文件内容 ...

  6. javascript小记一则:今天在写VS2005——.NET程序时,写的一个JS图片示例案例

    源码如下,如遇调试问题,可以找我解决: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &quo ...

  7. MySQL 笔记整理(12) --为什么我的MySQL会“抖”一下?

    笔记记录自林晓斌(丁奇)老师的<MySQL实战45讲> (本篇内图片均来自丁奇老师的讲解,如有侵权,请联系我删除) 12) --为什么我的MySQL会“抖”一下? 断更了一段时间,因为这几 ...

  8. PHP一些常用的正则表达式分享给大家

    一.校验数字的表达式 1 数字:^[0-9]*$2 n位的数字:^\d{n}$3 至少n位的数字:^\d{n,}$4 m-n位的数字:^\d{m,n}$5 零和非零开头的数字:^(0|[1-9][0- ...

  9. javascript函数调用中的方法调用模式

    最近想起来之前看过的一种js语法,感觉很实用,但是又想不起来具体的写法.然后在网上浏览了一段时间,终于成功的再现了记忆中的那种语法,嗯~,还是那个熟悉的味道! 代码如下: <script> ...

  10. android中使用afinal一行源码显示网络图片

    下面代码是关于android中使用afinal一行显示网络图片的代码. public class DemoActivity extends FinalActivity { @Override publ ...