Time Limit: 1000 ms   Memory Limit: 256 MB

Description


题解

状态表示:

  这题的状态表示有点难想......

  设$f_i$表示第$i$个事件经过之后,到达终点之前,不再回到事件$i$或事件$i$的左边的概率,反过来说就是可以在右边乱绕,若事件$i$的位置为pos,“右边”指的就是$(pos,h]$。

  我们将第$i$个事件到第$i+1$个事件中间这一段路程记为$S_i$,那么期望经过$S_i$的次数就为$1/f_i$。

  为什么是$1/f_i$呢?具体来说,只在右边乱绕,最左也只能到达$i+1$;一旦跨越到i或i的左边位置,那么S就必须要被经过了。所以$f_i$越小,被踢到左边或起点的概率就越大,经过$S_i$的概率和期望也就越大。


Orzhy Orzyww Orzyxq

状态转移:

  我们来反向转移嘿。

  考虑$f_i$,我们应该从$f_i+1$得到。

  我们令$p_i$为第$i$个事件的成功概率(获得Flag或打败敌人的概率)。

  •   如果$i+1$个事件是一个敌人,那么

      $f_i=f_{i+1}*p_{i+1}$

  •   如果$i+1$个事件是一面FLAG,那么

      $f_i=f_{i+1}+(1-f_{i+1})*p_{i+1}*f_{i+1}+((1-f_{i+1})*p_{i+1})^2*f_{i+1}+...+((1-f_{i+1})*p_{i+1})^k*f_{i+1}$

         $=f_{i+1}*(1+p_{i+1}*(1-f_{i+1})+p_{i+1}^2*(1-f_{i+1})^2+...+p_{i+1}^k*(1-f_{i+1})^k)$

      ${k\to\infty}$

       可以运用极限等式的求法可以将极限部分转换为下式的分母:

         $f_i=\frac{f_{i+1}}{(1-p_{i+1}*(1-f_{i+1}))}$

      这是什么意思呢?

     看回第一个式子,$(1-f_{i+1})$的意思是被弹回i+1或i+1的左边,$p_{i+1}$的意思是被$i+1$这个旗子留住,$f_{i+1}$的意思是从$i+1$一路走到终点的概率。

     $(1-f_{i+1})*p_{i+1}*f_{i+1}$意思是按下图的1-2-3顺序执行

     同理,$((1-f_{i+1})*p_{i+1})^2*f_{i+1}$表示1-2-1-2-3,$((1-f_{i+1})*p_{i+1})^3*f_{i+1}$表示1-2-1-2-1-2-3,以此类推即可。

     计算时所有除法转为逆元,记得%多一点(记8.17)

      

【2016北京集训测试赛(十)】 Azelso (期望DP)的更多相关文章

  1. [2016北京集训测试赛5]azelso-[概率/期望dp]

    Description Solution 感谢大佬的博客https://www.cnblogs.com/ywwyww/p/8511141.html 定义dp[i]为[p[i],p[i+1])的期望经过 ...

  2. 【2016北京集训测试赛】azelso

    [吐槽] 首先当然是要orzyww啦 以及orzyxq奇妙顺推很强qwq 嗯..怎么说呢虽然说之前零零散散做了一些概d的题目但是总感觉好像并没有弄得比较明白啊..(我的妈果然蒟蒻) 这题的话可以说是难 ...

  3. 2016北京集训测试赛(十)Problem A: azelso

    Solution 我们把遇到一个旗子或者是遇到一个敌人称为一个事件. 这一题思路的巧妙之处在于我们要用\(f[i]\)表示从\(i\)这个事件一直走到终点这段路程中, \(i\)到\(i + 1\)这 ...

  4. 【2016北京集训测试赛(十六)】 River (最大流)

    Description  Special Judge Hint 注意是全程不能经过两个相同的景点,并且一天的开始和结束不能用同样的交通方式. 题解 题目大意:给定两组点,每组有$n$个点,有若干条跨组 ...

  5. 2016北京集训测试赛(十六)Problem C: ball

    Solution 这是一道好题. 考虑球体的体积是怎么计算的: 我们令\(f_k(r)\)表示\(x\)维单位球的体积, 则 \[ f_k(1) = \int_{-1}^1 f_{k - 1}(\sq ...

  6. 2016北京集训测试赛(十六)Problem B: river

    Solution 这题实际上并不是构造题, 而是一道网络流. 我们考虑题目要求的一条路径应该是什么样子的: 它是一个环, 并且满足每个点有且仅有一条出边, 一条入边, 同时这两条边的权值还必须不一样. ...

  7. 2016北京集训测试赛(十六)Problem A: 任务安排

    Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...

  8. 2016北京集训测试赛(十四)Problem B: 股神小D

    Solution 正解是一个\(\log\)的link-cut tree. 将一条边拆成两个事件, 按照事件排序, link-cut tree维护联通块大小即可. link-cut tree维护子树大 ...

  9. 2016北京集训测试赛(十四)Problem A: 股神小L

    Solution 考虑怎么卖最赚钱: 肯定是只卖不买啊(笑) 虽然说上面的想法很扯淡, 但它确实能给我们提供一种思路, 我们能不买就不买; 要买的时候就买最便宜的. 我们用一个优先队列来维护股票的价格 ...

随机推荐

  1. Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)

    Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...

  2. Git 使用问题 - win7 git bash下git pull失败

    win7 旗舰版,从github上pull代码时,git bash命令出现错误 Administrator@rust-PC /g/rust_proj/cardslib (master) $ git - ...

  3. 将csv格式的文件数据导入mysql中

    示例如下: load data infile 'test.csv'into table `test`fields terminated by ',' optionally enclosed by '& ...

  4. 关于Class.forName(className).newInstance()介绍

    Class.forName(xxx.xx.xx) 返回的是一个类 首先你要明白在java里面任何class都要装载在虚拟机上才能运行.这句话就是装载类用的(和new 不一样,要分清楚). 至于什么时候 ...

  5. Spring+SpringMVC+MyBatis集成学习笔记【一】

    一,首先要清楚,SpringMVC其实就是Spring的一个组件       例如我们知道Spring中有类似于,AOP TX等等类似的组件,所以SpringMVC其实就是Spring的一个组件,是S ...

  6. 用subline text写PHP后台服务器POST请求

    1 运行XAMPP程序,看到Apache Web Server 是Running状态即可 2 打开Subline text ,新建一个PHP文件,选择保存路径:应用程序->XAMPP->h ...

  7. Js中有关变量声明和函数声明提升的问题

    在ECMAScript5中没有块级作用域一说,只有函数作用域和全局作用域,在其中声明的变量和函数和其他语言的展现形式不同,在某些情况下不一定需要先定义后使用,函数和变量的使用可以在其声明之前,这到底是 ...

  8. [补档][COGS 2434]暗之链锁

    [COGS 2434]暗之链锁 题目 传说中的暗之连锁被人们称为Dark.<!--more-->Dark是人类内心的黑暗的产物,古今中外的勇者们都试图打倒它.经过研究,你发现Dark呈现无 ...

  9. Python 爬虫抓取代理IP,并检测联通性

    帮朋友抓了一些代理IP,并根据测试联的通性,放在了不通的文件夹下.特将源码分享 注意: 1,环境Python3.5 2,安装BeautifulSoup4  requests 代码如下: 1 2 3 4 ...

  10. SpringBoot初识(一)

    一.什么是SpringBoot 最近几年,微服务的概念越来越火.而相信大家在搜索微服务时,映入眼帘的首先就是SpringBoot以及SpringCloud.SpringCloud提供的一套完整的微服务 ...