创新点:基于Faster-RCNN使用更高效的基础网络

1.1 创新点

PVAnet是RCNN系列目标方向,基于Faster-RCNN进行改进,Faster-RCNN基础网络可以使用ZF、VGG、Resnet等,但精度与速度难以同时提高。PVAnet的含义应该为:Performance Vs Accuracy,意为加速模型性能,同时不丢失精度的含义。主要的工作再使用了高效的自己设计的基础网络。该网络使用了C.ReLU、Inception、HyperNet以及residual模块等技巧。整体网络结构如图1所示。

2.1 C.ReLU

C.ReLU的作者观察基础网络的特征图输出,发现前部分每层输出的特征图的值大部分互为相反数,因此,作者减小输出特征图个数为原始一半,另一半直接取相反数得到,再将两部分特征图连接,从而减少了卷积核数目。关于C.ReLU参考博客论文C.ReLU的模块结构如图2所示。

2.2 Inception模块

作者发现googlenet中Inception模块由于具有多种感受野的卷积核组合,因此能够适应多尺度目标的检测,作者使用基于Inception模块组合并且组合跳级路特征进行基础网络后部分特征的提取。

2.3 HyperNet

将conv3中原图1/8特征图、conv3中原图1/16特征图、conv3中原图1/32特征图连接来增加最终特征图中多尺度信息。其中,conv3中特征图被下采样,conv5中特征图被线性插值上采样。

3.1 实验过程

除了以上基础网络的区别:

(1) PVAnet使用的anchor与faster-rcnn不同,PVA在每个特征点上使用了25个anchor(5种尺度,5种形状)。

(2) 并且RPN网络不使用全部特征图就能达到很好的定位精度,RPN网络只用生成200个proposals;

(3) 使用VOC2007、VOC2012、COCO一起训练模型;

(4) 可以使用类似于Fast-RCNN的truncated SVD来加速全连接层的速度;

(5) 使用投票机制增加训练精度,投票机制应该参考于R-FCN

参考:

PVAnet论文阅读笔记

[目标检测]PVAnet原理的更多相关文章

  1. [目标检测]SSD原理

    1 SSD基础原理 1.1 SSD网络结构 SSD使用VGG-16-Atrous作为基础网络,其中黄色部分为在VGG-16基础网络上填加的特征提取层.SSD与yolo不同之处是除了在最终特征图上做目标 ...

  2. 深度学习笔记之使用Faster-Rcnn进行目标检测 (原理篇)

    不多说,直接上干货! Object Detection发展介绍 Faster rcnn是用来解决计算机视觉(CV)领域中Object Detection的问题的.经典的解决方案是使用: SS(sele ...

  3. [目标检测]YOLO原理

    1 YOLO 创新点: 端到端训练及推断 + 改革区域建议框式目标检测框架 + 实时目标检测 1.1 创新点 (1) 改革了区域建议框式检测框架: RCNN系列均需要生成建议框,在建议框上进行分类与回 ...

  4. 第三十六节,目标检测之yolo源码解析

    在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的 ...

  5. 目标检测(六)YOLOv2__YOLO9000: Better, Faster, Stronger

    项目链接 Abstract 在该论文中,作者首先介绍了对YOLOv1检测系统的各种改进措施.改进后得到的模型被称为YOLOv2,它使用了一种新颖的多尺度训练方法,使得模型可以在不同尺寸的输入上运行,并 ...

  6. 【目标检测】YOLO:

    PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CN ...

  7. Comparison of SIFT Encoded and Deep Learning Features for the Classification and Detection of Esca Disease in Bordeaux Vineyards(分类MobileNet,目标检测 RetinaNet)

    识别葡萄的一种虫害,比较了传统SIFT和深度学习分类,最后还做了目标检测 分类用的 MobileNet,目标检测 RetinaNet MobileNet 是将传统深度可分离卷积分成了两步,深度卷积和逐 ...

  8. [目标检测] 从 R-CNN 到 Faster R-CNN

    R-CNN 创新点 经典的目标检测算法使用滑动窗法依次判断所有可能的区域,提取人工设定的特征(HOG,SIFT).本文则预先提取一系列较可能是物体的候选区域,之后仅在这些候选区域上用深度网络提取特征, ...

  9. 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS

    "目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...

随机推荐

  1. 最小生成树之Prim算法和Kruskal算法

    最小生成树算法 一个连通图可能有多棵生成树,而最小生成树是一副连通加权无向图中一颗权值最小的生成树,它可以根据Prim算法和Kruskal算法得出,这两个算法分别从点和边的角度来解决. Prim算法 ...

  2. Spark Streaming笔记——技术点汇总

    目录 目录 概况 原理 API DStream WordCount示例 Input DStream Transformation Operation Output Operation 缓存与持久化 C ...

  3. CONSOLE_SCREEN_BUFFER_INFO 结构体

    CONSOLE_SCREEN_BUFFER_INFO结构体 来源:https://msdn.microsoft.com/en-us/library/ms682093(v=vs.85).aspx 作用 ...

  4. ES6解构赋值

    前面的话 我们经常定义许多对象和数组,然后有组织地从中提取相关的信息片段.在ES6中添加了可以简化这种任务的新特性:解构.解构是一种打破数据结构,将其拆分为更小部分的过程.本文将详细介绍ES6解构赋值 ...

  5. j2ee中的2是什么意思

    J2EE里面的2是什么意思 1998年Java 1.2版本发布,1999年发布Java 1.2的标准版,企业版,微型版三个版本,为了区分这三个版本,分别叫做Java2SE,Java2EE,Java2M ...

  6. Ant Design UI组件

    Ant Design 是面向中台的 UI 设计语言.  http://ant.design/

  7. ETL作业调度软件TASKCTL4.1集群部署

    熟悉TASKCTL4.1一段时间后,觉得它的调度逻辑什么的都还不错,但是感觉单机部署不太够用.想实现跨机调度作业,就要会TASKCTL的集群部署.下面就是我在网上找到的相关资料,非原创. 单机部署成功 ...

  8. [BZOJ 4325][NOIP 2015] 斗地主

    一道防AK好题 4325: NOIP2015 斗地主 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 820  Solved: 560[Submit] ...

  9. 灵玖软件Nlpir Parser语义智能内容过滤

    Internet是全球信息共享的基础设施,是一种开放和面向 所有用户的技术.它一方面要保证信息方便.快捷的共享;另一方面要防止垃圾信息的传播.网络内容分析是一种管理信 息传播的重要手段.它是网络信息安 ...

  10. 细说 Java 的深拷贝和浅拷贝

    版权声明: 本账号发布文章均来自公众号,承香墨影(cxmyDev),版权归承香墨影所有. 未经允许,不得转载. 一.前言 任何变成语言中,其实都有浅拷贝和深拷贝的概念,Java 中也不例外.在对一个现 ...