前言

参考《JavaScript语言精粹》

递归是一种强大的编程技术,他把一个问题分解为一组相似的子问题,每一问题都用一个寻常解去解决。递归函数就是会直接或者间接调用自身的一种函数,一般来说,一个递归函数调用自身去解决它的子问题。

"汉诺塔"经典递归问题

"汉诺塔"是印度的一个古老传说,也是程序设计中的经典的递归问题,是一个著名的益智游戏:

  题目如下:

    塔上有三根柱子和一套直径各不相同的空心圆盘,开始时源柱子上的所有圆盘都按从大到小的顺序排列。目标是通过每一次移动一个圆盘到另一根柱子上,最终把一堆圆盘移动到目标柱子上,过程中不允许把较大的圆盘放置在较小的圆盘上;

    

寻找规律(把所有的圆盘移动到C):

  1)n(圆盘个数) == 1

    第一次:1号盘  A -> C      sum(移动次数) = 1

  2)n == 2

    第一次:1号盘 A -> B

    第二次:2号盘 A -> C

    第三次:1号盘 B -> C  sum = 3

  3)n == 3

    第一次:1号盘 A -> C

    第二次:2号盘 A -> B

    第三次:1号盘 C -> B

    第四次:3号盘 A -> C

    第五次:1号盘 B -> A

    第六次:2号盘 B -> C

    第七次:1号盘 A -> C  sum = 7

   

  故不难发现规律,移动次数为:sum = 2^n - 1 

算法分析(递归):

  把一堆圆盘从一个柱子移动另一根柱子,必要时使用辅助的柱子。可以把它分为三个子问题:

    首先,移动一对圆盘中较小的圆盘到辅助柱子上,从而露出下面较大的圆盘,

    其次,移动下面的圆盘到目标柱子上

    最后,将刚才较小的圆盘从辅助柱子上在移动到目标柱子上

   把三个步骤转化为简单数学问题:

    (1)     把 n-1个盘子由A 移到 B;

    (2)     把 第 n个盘子由 A移到 C;

    (3)     把n-1个盘子由B 移到 C;

  我们创建一个JS函数,当它调用自身的时候,它去处理当前正在处理圆盘之上的圆盘。最后它回一个不存在圆盘去调用,在这种情况下,它不在执行任何操作。

JavaScript源代码实现

var hanoi = function(disc,src,aux,dst){

    if(disc>0){

        hanoi(disc-1,src,dst,aux);

        console.log(' 移动 '+ disc +  ' 号圆盘 ' + ' 从 ' + src +  ' 移动到 ' +  dst);

        hanoi(disc-1,aux,src,dst)

    }

}

hanoi(3,'A','B','C')

整个算法的思路是:

  1. 将A柱子上的n-1个盘子暂时移到B柱子上
  2. A柱子只剩下最大的盘子,把它移到目标柱子C上
  3. 最后再将B柱子上的n-1

JS递归函数遍历Dom

  递归函数可以非常高效的操作D树形结构,在JavaScript有一种"天然的树形结构"浏览器端的文档对象模型(Dom)。每次递归调用时处理指定树的一小段。

/*      我们定义一个walk_the_DOM函数,
  1) 它从某个指定的节点开始,按指定HTML源码的顺序,访问树的每个节点
   2)它会调用一个函数,并依次传递每个节点给它,walk_the_DOM调用自身去处理每一个节点
*/
var walk_the_DOM = function walk( node , func ) {

    func(node);

    node = node.firstChild;

    while (node) {

        walk( node , func );

        node = node.nextSibling;

     }    

}

/*    在定义一个getElementByAttribute函数
1) 它以一个属性名称字符串和一个可选的匹配值作为参数
2) 它调用walk_the_DOM,传递一个用来查找节点属性名的函数作为参数,匹配得节点都会累加到一个数组中
*/
              var getElementsByAttribute=function(att,value){
                var results=[];

                walk_the_DOM(document.body,function(node){

                    var actual=node.nodeType===1&&node.getAttribute(att);

                    if(typeof actual==='string' &&( actual===value|| typeof value!=='string')){

                        results.push(node);

                    }
                });
                return results;
            }

命名函数表达式和递归

递归问题

求阶乘的函数:

function factorial(num){
    if(num<=1){
        return 1;
    }else{
        return num*factorial(num-1);
    }
}

通过将函数factorial设置为null,使原始函数的引用只剩一个, 此时factorial已不再是函数

arguments.callee实现递归

arguments.callee是一个指向正在执行的函数的指针,因此可以用它来实现对函数的递归调用

function factorial(num){
    if(num<=1){
        return 1;
    }else{
        return num*arguments.callee(num-1);
    }
}
var anotherFactorial=factorial;
factorial=null;
anotherFactorial(3) 

用arguments.callee代替函数名,可以确保无论怎样调用函数都不会出问题。因此,在编写递归函数时,使用arguments.callee总比使用函数名更保险。

但是在严格模式下,不能通过脚本访问arguments.callee,访问这个属性会报错

命名函数表达式实现递归

创建一个名为f()的命名函数表达式,然后赋值给factorial,即使把函数赋值给了另一个变量,函数的名字f仍然有效,所以递归调用照样能正常完成。

这种方式在严格模式和非严格模式都可行。

var factorial =function f(num){
    'use strict'
    if(num<=1){
        return 1;
    }else{
        return num* f (num-1);
    }
}

factorial(3
var anotherFactorial=factorial;
factorial=null;
anotherFactorial(3

从"汉诺塔"经典递归到JS递归函数的更多相关文章

  1. 用C语言实现汉诺塔自动递归演示程序

    用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 githu ...

  2. Hanio汉诺塔代码递归实现

    1.背景介绍 Hanio (汉诺塔,又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘 ...

  3. CODEVS 3145 汉诺塔游戏 递归

    题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我A上(如图所示),你的 ...

  4. HDU 2064 汉诺塔III(递归)

    题目链接 Problem Description 约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘 ...

  5. 【Python实践-3】汉诺塔问题递归求解(打印移动步骤及计算移动步数)

    # -*- coding: utf-8 -*- #汉诺塔移动问题 # 定义move(n,a,b,c)函数,接受参数n,表示3个柱子A.B.C中第1个柱子A的盘子数量 # 然后打印出把所有盘子从A借助B ...

  6. 汉诺塔问题-递归实现-JAVA

    public class hanio { /** * @param args */ public static void main(String[] args) { // TODO Auto-gene ...

  7. Python 实现汉诺塔问题(递归)

    有三根柱子一次为A,B,C 现在A柱子上有3个块,按照汉诺塔规则移动到C柱子上去,打印步骤? 我们这样理解:A为原始柱,C为目标柱,B为缓冲柱 1.定义一个函数move(n,a,b,c),n为原始柱上 ...

  8. 3145 code[VS]汉诺塔游戏--递归

    3145 汉诺塔游戏 题目描述 Description 汉诺塔问题(又称为河内塔问题),是一个大家熟知的问题.在A,B,C三根柱子上,有n个不同大小的圆盘(假设半径分别为1-n吧),一开始他们都叠在我 ...

  9. hdu2064 汉诺塔Ⅲ(递归)

    汉诺塔III Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

随机推荐

  1. Hadoop集群的hbase介绍、搭建、环境、安装

    1.hbase的介绍(自行百度hbase,比我总结的全面具体) HBase – Hadoop Database,是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBase技术可在廉价PC ...

  2. IDEA的热部署插件jrebel6.4.3版离线安装版配置与破解

    JRebel 介绍 IDEA上原生是不支持热部署的,一般更新了 Java 文件后要手动重启 Tomcat 服务器,才能生效,浪费不少生命啊.目前对于idea热部署最好的解决方案就是安装JRebel插件 ...

  3. Echarts折线图表断点如何补全

    Echarts折线图如何补全断点以及如何隐藏断点的title 做报表的时候,尤其是做图表的时候时常会碰到某一记录的值中缺少某个时间段(比如月份或季度)的值,导致图表显示残缺不全,for example ...

  4. css3变换,过度,动画实现梦幻网页

    html和css3一出,整个互联网设计发生了颠覆性的改变,各大IT企业也推出了很多新颖的设计,比如百度浏览器的下载首页,fullpage设计风格加css动画让网页看起来很流畅舒服. css3的变换有3 ...

  5. linux shell变量$#,$@,$0,$1,$2的含义解释

    变量说明: $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process的PID $? 最后运行的命令的结束代码(返回值) $- 使用Set命令设定的Flag一览  ...

  6. FreeRTOS——任务管理

    1. FreeRTOS 任务不允许以任何方式从实现函数中返回——他们绝不能有一条“return”语句,也不可能执行到函数的末尾.如果一个函数不需要,可以将其删除,如在任务中使用函数vTaskDelet ...

  7. poj_3122:Pie(二分)

    不算难的一道二分..各种玄学错误..eps小了T,大了WA..最后G++改成C++提交就AC了.. #include<iostream> #include<cstdio> #i ...

  8. linux函数的阻塞与非阻塞IO及错误处理

    1.阻塞是指进程等待某一个事件的发生而处于等待状态不往下执行,如果等待的事件发生了则会继续执行该进程.调用系统阻塞函数可能会导致进程阻塞进入睡眠状态. 2.阻塞IO之read读取键盘输入数据 3.li ...

  9. Linux通过shell执行自动化部署

    背景 通过shell判断是否存在补丁更新,进行自动化的部署 代码 #!/bin/sh #Edit:何彦霆 #version: beta #执行环境初始化 source /hxspace/product ...

  10. jenkins IOS- ad-hoc 打包

    背景 客户无大企业证书,只有开发者证书,如果进行开发分发测试只能采用两种方式 testfight ad-hoc打包 上testfight存在一定的审核时间,排除掉,最后选择打ad-hoc的包 解决 查 ...