The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题意:有一块足够长的墙了给竞选人贴海报,后贴的可能会把衣面贴的给覆盖掉,问最有多少不同的海报是能看到的。

 题解:遇到这种题可以想到,并查集星球大战那道题目,就是后面的会将前面的影响,而前面的结果会被覆盖,这样就可以理解为

    越往后面加进来优先级越高,所以就是前面的只会露出当前有的空的面积,所以就十分简单了。

 这个代码绝对不是我打的,但是可以参考,当时贴代码比较爽。

 #include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1 const int maxn = ;
bool hash[maxn];
int li[maxn] , ri[maxn];
int X[maxn*]; /*最多3倍~*/
int col[maxn<<]; /*2X的空间复杂度是普通的四倍*/
int cnt; void PushDown(int rt) {
if (col[rt] != -) {
col[rt<<] = col[rt<<|] = col[rt]; /*直接赋值 覆盖之~*/
col[rt] = -;
}
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
col[rt] = c;
return ; /*盖了果断return*/
}
PushDown(rt);
int m = (l + r) >> ;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
}
void query(int l,int r,int rt) {
if (col[rt] != -) {
if (!hash[col[rt]]) cnt ++;
hash[ col[rt] ] = true;
return ; /*由于这里是直接return,在最顶层的mark处直接跳过此区间,所以不用在下面加PushDown*/
}
if (l == r) return ;
int m = (l + r) >> ;
query(lson);
query(rson);
}
int Bin(int key,int n,int X[]) { /*离散化哈希函数*/
int l = , r = n - ;
while (l <= r) { /*离散化哈希--二分映射*/
int m = (l + r) >> ;
if (X[m] == key) return m;
if (X[m] < key) l = m + ;
else r = m - ;
}
return -; /*注意key值一定要在X中,否则各种跪*/
}
int main() {
int T , n;
scanf("%d",&T);
while (T --) {
scanf("%d",&n);
int nn = ;
for (int i = ; i < n ; i ++) { /*把所有出现的数装在X里*/
scanf("%d%d",&li[i] , &ri[i]);
X[nn++] = li[i];
X[nn++] = ri[i];
}
sort(X , X + nn);
int m = ;
for (int i = ; i < nn; i ++) { /*排序之后去重*/
if (X[i] != X[i-]) X[m ++] = X[i];
}
for (int i = m - ; i > ; i --) { /*离散化技巧:凸显间隔(可避免上文的数据2出错)*/
if (X[i] != X[i-] + ) X[m ++] = X[i-] + ;
}
sort(X , X + m); /*再次排序,便于之后设计映射时用二分高效hash*/
memset(col , - , sizeof(col));
for (int i = ; i < n ; i ++) {
int l = Bin(li[i] , m , X); /*Bin为离散哈希函数*/
int r = Bin(ri[i] , m , X); /*Bin为离散哈希函数*/
update(l , r , i , , m , ); /*以离散后的键值更新线段树*/
}
cnt = ;
memset(hash , false , sizeof(hash));
query( , m , );
printf("%d\n",cnt);
}
return ;
}

poj2528 线段树+离散化 (倒序)的更多相关文章

  1. poj2528(线段树+离散化)Mayor's posters

    2016-08-15 题意:一面墙,往上面贴海报,后面贴的可以覆盖前面贴的.问最后能看见几种海报. 思路:可以理解成往墙上涂颜色,最后能看见几种颜色(下面就是以涂色来讲的).这面墙长度为1~1000 ...

  2. poj2528 线段树+离散化

    由于坐标可能很大,此时需要离散化,将值转化为对应的坐标. #include<stdio.h> #include<algorithm> using namespace std; ...

  3. POJ2528 线段树离散化

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 62771   Accepted: 18120 ...

  4. [poj2528] Mayor's posters (线段树+离散化)

    线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...

  5. poj-2528线段树练习

    title: poj-2528线段树练习 date: 2018-10-13 13:45:09 tags: acm 刷题 categories: ACM-线段树 概述 这道题坑了我好久啊啊啊啊,,,, ...

  6. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  7. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  8. [UESTC1059]秋实大哥与小朋友(线段树, 离散化)

    题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...

  9. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

随机推荐

  1. ThinkPhp5源码剖析之Cache

    为什么需要Cache(缓存)? 假设现在有一个小说网,有非常多的读者,有一篇新的章节更新了,那么可能一分钟内有几万几十万的访问量. 如果没有缓存,同样的内容就要去数据库重复查询,那可能网站一下就挂掉了 ...

  2. mysql数据库基本操作以及获取数据库强大帮助文档

    MySQL数据库强大帮助文档 mysql 中help等价于\h或者? mysql> ? create database;(查看创建数据库的语法) mysql> ? drop databas ...

  3. javascript学习笔记-3

    1.对于javascript中的this关键字,表示的是当前代码所处的对象. var a={ get:function(){ this.val=12 } } console.log(a.val); a ...

  4. CDN架构以及原理分析

    详见: http://blog.yemou.net/article/query/info/tytfjhfascvhzxcytp61  在不同地域的用户访问网站的响应速度存在差异,为了提高用户访问的响应 ...

  5. 图论中DFS与BFS的区别、用法、详解?

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

  6. 转:【深入Java虚拟机】之五:多态性实现机制——静态分派与动态分派

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/17965867   方法解析 Class文件的编译过程中不包含传统编译中的连接步骤,一切方法 ...

  7. 软件工程(GZSD2015)第二次作业成绩

    作业评分表 姓名 提交 语言 界面 PSP(3) CODE(4) 代码规范(2) 改进(1) 基本得分 提交时间 原始总得分 相对得分 最终得分 涂江凤 20150407 C CLI 3 4 2 1 ...

  8. 201521123080《Java程序设计》第7周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图或其他)归纳总结集合相关内容. 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 源代码如下 分析: ...

  9. 201521123077 《Java程序设计》第9周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常相关内容. 异常分为uncheckedException和checkedException checkedException 继 ...

  10. 201521123056 《Java程序设计》第12周学习总结

    1. 本周学习总结 2. 书面作业 将Student对象(属性:int id, String name,int age,double grade)写入文件student.data.从文件读出显示. 1 ...