poj2528 线段树+离散化 (倒序)
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
Output
The picture below illustrates the case of the sample input.
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4 题意:有一块足够长的墙了给竞选人贴海报,后贴的可能会把衣面贴的给覆盖掉,问最有多少不同的海报是能看到的。
题解:遇到这种题可以想到,并查集星球大战那道题目,就是后面的会将前面的影响,而前面的结果会被覆盖,这样就可以理解为
越往后面加进来优先级越高,所以就是前面的只会露出当前有的空的面积,所以就十分简单了。
这个代码绝对不是我打的,但是可以参考,当时贴代码比较爽。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1 const int maxn = ;
bool hash[maxn];
int li[maxn] , ri[maxn];
int X[maxn*]; /*最多3倍~*/
int col[maxn<<]; /*2X的空间复杂度是普通的四倍*/
int cnt; void PushDown(int rt) {
if (col[rt] != -) {
col[rt<<] = col[rt<<|] = col[rt]; /*直接赋值 覆盖之~*/
col[rt] = -;
}
}
void update(int L,int R,int c,int l,int r,int rt) {
if (L <= l && r <= R) {
col[rt] = c;
return ; /*盖了果断return*/
}
PushDown(rt);
int m = (l + r) >> ;
if (L <= m) update(L , R , c , lson);
if (m < R) update(L , R , c , rson);
}
void query(int l,int r,int rt) {
if (col[rt] != -) {
if (!hash[col[rt]]) cnt ++;
hash[ col[rt] ] = true;
return ; /*由于这里是直接return,在最顶层的mark处直接跳过此区间,所以不用在下面加PushDown*/
}
if (l == r) return ;
int m = (l + r) >> ;
query(lson);
query(rson);
}
int Bin(int key,int n,int X[]) { /*离散化哈希函数*/
int l = , r = n - ;
while (l <= r) { /*离散化哈希--二分映射*/
int m = (l + r) >> ;
if (X[m] == key) return m;
if (X[m] < key) l = m + ;
else r = m - ;
}
return -; /*注意key值一定要在X中,否则各种跪*/
}
int main() {
int T , n;
scanf("%d",&T);
while (T --) {
scanf("%d",&n);
int nn = ;
for (int i = ; i < n ; i ++) { /*把所有出现的数装在X里*/
scanf("%d%d",&li[i] , &ri[i]);
X[nn++] = li[i];
X[nn++] = ri[i];
}
sort(X , X + nn);
int m = ;
for (int i = ; i < nn; i ++) { /*排序之后去重*/
if (X[i] != X[i-]) X[m ++] = X[i];
}
for (int i = m - ; i > ; i --) { /*离散化技巧:凸显间隔(可避免上文的数据2出错)*/
if (X[i] != X[i-] + ) X[m ++] = X[i-] + ;
}
sort(X , X + m); /*再次排序,便于之后设计映射时用二分高效hash*/
memset(col , - , sizeof(col));
for (int i = ; i < n ; i ++) {
int l = Bin(li[i] , m , X); /*Bin为离散哈希函数*/
int r = Bin(ri[i] , m , X); /*Bin为离散哈希函数*/
update(l , r , i , , m , ); /*以离散后的键值更新线段树*/
}
cnt = ;
memset(hash , false , sizeof(hash));
query( , m , );
printf("%d\n",cnt);
}
return ;
}
poj2528 线段树+离散化 (倒序)的更多相关文章
- poj2528(线段树+离散化)Mayor's posters
2016-08-15 题意:一面墙,往上面贴海报,后面贴的可以覆盖前面贴的.问最后能看见几种海报. 思路:可以理解成往墙上涂颜色,最后能看见几种颜色(下面就是以涂色来讲的).这面墙长度为1~1000 ...
- poj2528 线段树+离散化
由于坐标可能很大,此时需要离散化,将值转化为对应的坐标. #include<stdio.h> #include<algorithm> using namespace std; ...
- POJ2528 线段树离散化
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 62771 Accepted: 18120 ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- poj-2528线段树练习
title: poj-2528线段树练习 date: 2018-10-13 13:45:09 tags: acm 刷题 categories: ACM-线段树 概述 这道题坑了我好久啊啊啊啊,,,, ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- [UESTC1059]秋实大哥与小朋友(线段树, 离散化)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
随机推荐
- WebService两种调用方法
1.wsimport生成本地客户端代码 命令提示窗口执行生成命令. 格式:wsimport -s "src目录" -p “生成类所在包名” -keep “wsdl发布地址” 示例: ...
- Selenium常规操作---基于python
from selenium import webdriver 1. 打开浏览器 driver=webdriver.Firefox() #火狐浏览器 driver=webdriver.Ie() #打 ...
- mysql创建字段非空NOT NULL的好处
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt338 很多表都包含可为 NULL (空值) 的列,即使应用程序井不需要保存 ...
- jvm系列 (五) ---类的加载机制
类的加载机制 目录 jvm系列(一):jvm内存区域与溢出 jvm系列(二):垃圾收集器与内存分配策略 jvm系列(三):锁的优化 jvm系列 (四) ---强.软.弱.虚引用 我的博客目录 什么是类 ...
- 使用nfs作为根文件系统启动,(3)
通过设置u-boot的bootargs来更改开机自动进入nfs远端服务器,不需要mount指令,实现虚拟机编译程序后直接通过u-boot烧写程序 1 使用nfs作为根文件系统启动 1.1 pr ...
- angular指令笔记(一):ng-options
1.ng-options指令用途: 在表达式中使用数组或对象来自动生成一个select中的option列表.ng-options与ng-repeat很相似,很多时候可以用ng-repeat来代替ng- ...
- JSONP的实现流程
在进行AJAX的时候会经常产生这样一个报错: 看红字,这是浏览器的同源策略,使跨域进行的AJAX无效.注意,不是不发送AJAX请求(其实就是HTTP请求),而是请求了,也返回了,但浏览器‘咔擦’一声, ...
- 自制MPLS解决路由黑洞实验
利用mpls解决BGP路由黑洞配置命令全解析 --By Jim 什么是BGP路由黑洞? BGP规定无论路由器是否启动bgp都要无条件地转发BGP消息和更新包(凌驾于IGP之上),违背了IGP" ...
- 1001.A+B Format (20)的解题
关于A+B的正确打开方式! 解题思路 gitub 也是研究了很久才学会了本地上传,中间还遇到一些问题,多亏学长的教程跟搜索引擎的帮忙解决啦! 我想还是了解题目的意思是解题的最关键,通过了查词软件跟自身 ...
- 201521123082 《Java程序设计》第14周学习总结
201521123082 <Java程序设计>第14周学习总结 标签(空格分隔):java 1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多数据库相关内容. Answ ...