【BZOJ5083】普及 单调栈+二分+RMQ
【BZOJ5083】普及
Description
Input
Output
Sample Input
jpjppj
Sample Output
题解:我们将区间和看成前缀相减和后缀相减,记前缀和为s1[i],后缀和为s2[i],那么区间[l,r]是合法的就等价于s1[r]>=s1[l-1...r-1],s2[l]>=s2[l+1...r+1]。我们可以用单调栈维护每个数左边第一个s1比它大的ls,和右边第一个s2比它大的rs。那么询问就变成了求最大的r-l,满足l>=ls[r]且r<=rs[l]。我们枚举l,然后用RMQ维护区间ls的最小值,然后二分查找即可。
Claris是怎么跑得那么快的啊~
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1000010;
int n,top,ans;
int ls[maxn],rs[maxn],v[maxn],s1[maxn],s2[maxn],st[maxn],mn[20][maxn],Log[maxn];
char str[maxn];
inline int query(int a,int b)
{
int k=Log[b-a+1];
return min(mn[k][a],mn[k][b-(1<<k)+1]);
}
int main()
{
scanf("%d%s",&n,str+1);
int i,j,l,r,mid;
for(i=1;i<=n;i++) s1[i]=s1[i-1]+(str[i]=='p'?1:-1);
for(i=n;i>=1;i--) s2[i]=s2[i+1]+(str[i]=='p'?1:-1);
for(st[top=1]=0,i=1;i<=n;i++)
{
while(top&&s1[st[top]]<=s1[i]) top--;
mn[0][i]=ls[i]=!top?1:(st[top]+2),st[++top]=i;
}
for(st[top=1]=n+1,i=n;i>=1;i--)
{
while(top&&s2[st[top]]<=s2[i]) top--;
rs[i]=!top?n:(st[top]-2),st[++top]=i;
}
for(i=2;i<=n;i++) Log[i]=Log[i>>1]+1;
for(j=1;(1<<j)<=n;j++) for(i=1;i+(1<<j)-1<=n;i++) mn[j][i]=min(mn[j-1][i],mn[j-1][i+(1<<(j-1))]);
for(i=1;i<=n;i++)
{
l=i-1,r=rs[i];
while(l<r)
{
mid=(l+r)>>1;
if(query(mid+1,r)<=i) l=mid+1;
else r=mid;
}
ans=max(ans,r-i+1);
}
printf("%d",ans);
return 0;
}
【BZOJ5083】普及 单调栈+二分+RMQ的更多相关文章
- BZOJ1012: [JSOI2008]最大数maxnumber [线段树 | 单调栈+二分]
1012: [JSOI2008]最大数maxnumber Time Limit: 3 Sec Memory Limit: 162 MBSubmit: 8748 Solved: 3835[Submi ...
- bzoj 4709 [Jsoi2011]柠檬——单调栈二分处理决策单调性
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4709 题解:https://blog.csdn.net/neither_nor/articl ...
- BZOJ1012最大数 [JSOI2008] 单调栈+二分
正解:单调栈+二分查找(or,线段树? 解题报告: 拿的洛谷的链接quq 今天尝试学习了下单调栈,然后就看到有个博客安利了这个经典例题?于是就去做了,感觉还是帮助了理解趴quqqqqq 这题,首先,一 ...
- 51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线
区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{ ...
- 【bzoj4237】稻草人 分治+单调栈+二分
题目描述 JOI村有一片荒地,上面竖着N个稻草人,村民们每年多次在稻草人们的周围举行祭典. 有一次,JOI村的村长听到了稻草人们的启示,计划在荒地中开垦一片田地.和启示中的一样,田地需要满足以下条件: ...
- 洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找)
洛谷P1823 [COI2007] Patrik 音乐会的等待(单调栈+二分查找) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1333275 这个题不是很 ...
- 2019牛客暑期多校训练营(第一场)A Equivalent Prefixes(单调栈/二分+分治)
链接:https://ac.nowcoder.com/acm/contest/881/A来源:牛客网 Two arrays u and v each with m distinct elements ...
- 【洛谷P1823】音乐会的等待 单调栈+二分
题目大意:给定一个长度为 N 的序列,定义两个数 \(a[i],a[j]\) 相互看得见,意味着 \(\forall k\in [i+1,j-1],a[k]\le a[i],a[k]\le a[j]\ ...
- spoj MINSUB 单调栈+二分
题目链接:点击传送 MINSUB - Largest Submatrix no tags You are given an matrix M (consisting of nonnegative i ...
随机推荐
- 和求余运算巧妙结合的jns指令
.text:004A78B1 and eax, 80000001h.text:004A78B6 jns short loc_4A78BD.text:004A78B8 dec eax.text:00 ...
- numpy.argmin 使用
https://docs.scipy.org/doc/numpy-1.10.1/reference/generated/numpy.argmin.html numpy.argmin(a, axis=N ...
- python 多线程爬虫 实例
多进程 Multiprocessing 模块 Process 类用来描述一个进程对象.创建子进程的时候,只需要传入一个执行函数和函数的参数即可完成 Process 示例的创建. star() 方法启动 ...
- 关于“Could not open ServletContext resource [/WEB-INF/applicationContext.xml]”解决方案
问题说明,我在web.xml文件中进行了如下配置 <servlet> <servlet-name>dispatcherServlet</servlet-name> ...
- 【Android】15.1 后台任务和前台任务
分类:C#.Android.VS2015: 创建日期:2016-02-29 一.简介 Android的活动(Activities)可以有多种状态,具体取决于用户的行为以及对操作系统的要求.虽然Acti ...
- 【Android】12.6 利用Intent实现记事本功能(NotePad)
分类:C#.Android.VS2015: 创建日期:2016-02-23 一.简介 这个例子演示如何实现一个简单的记事本功能. 该例子提前使用了后面章节将要介绍的SQLLite数据库. 二.示例-c ...
- windows7环境下使用pip安装MySQLdb
1.首先,需要确定你已经安装了pip.在Python2.7的安装包中,easy_install.py和pip都是默认安装的.可以在Python的安装目录先确认,如果\Python27\Scripts里 ...
- js监听 window.open 关闭事件
转载自:http://blog.csdn.net/hanshileiai/article/details/41346729 首先创建一个新的对象,这将打开一个弹出这样的: var winObj = w ...
- udacity android 实践笔记: lesson 4 part b
udacity android 实践笔记: lesson 4 part b 作者:干货店打杂的 /titer1 /Archimedes 出处:https://code.csdn.net/titer1 ...
- 【Spring实战】—— 3 使用facotry-method创建单例Bean总结
如果有这样的需求: 1 不想再bean.xml加载的时候实例化bean,而是想把加载bean.xml与实例化对象分离. 2 实现单例的bean 以上的情况,都可以通过工厂方法factory-metho ...