最大似然估计(MLE)与最大后验概率(MAP)
- 何为:最大似然估计(MLE):
最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。可以通过采样,获取部分数据,然后通过最大似然估计来获取已知模型的参数。
最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。
最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布(i.i.d)的。
最大似然估计的一般求解过程:
(1) 写出似然函数;
(2) 对似然函数取对数,并整理;
(3) 求导数 ;
(4) 解似然方程。
- 何为:最大后验概率(MAP):
最大后验估计是根据经验数据获得对难以观察的量的点估计。
与最大似然估计类似,但是最大的不同是,最大后验估计融入了要估计量的先验分布在其中。
故最大后验估计可以看做规则化的最大似然估计。
- 什么情况下,MAP=ML?
当模型的参数本身的概率是均匀的,即该概率为一个固定值的时候,二者相等。
当先验分布均匀之时,MAP 估计与 MLE 相等。下图是均匀分布的一个实例。
我们可以看到均匀分布给 X 轴(水平线)上的每个值分布相同的权重。直观讲,它表征了最有可能值的任何先验知识的匮乏。在这一情况中,所有权重分配到似然函数,因此当我们把先验与似然相乘,由此得到的后验极其类似于似然。因此,最大似然方法可被看作一种特殊的 MAP。
【Reference】
[2] Probability concepts explained: Maximum likelihood estimation
最大似然估计(MLE)与最大后验概率(MAP)的更多相关文章
- 机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解
目录 机器学习基础 1. 概率和统计 2. 先验概率(由历史求因) 3. 后验概率(知果求因) 4. 似然函数(由因求果) 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率( ...
- 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 最大似然估计(MLE)与最小二乘估计(LSE)的区别
最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小. ...
- Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))
在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...
- 补充资料——自己实现极大似然估计(最大似然估计)MLE
这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计. 代码和结果演示 代码: #取出MASS包这中的数据 data(geys ...
- 最大似然估计 (MLE) 最大后验概率(MAP)
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...
- 最大似然估计 (MLE)与 最大后验概率(MAP)在机器学习中的应用
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道 ...
- 【模式识别与机器学习】——最大似然估计 (MLE) 最大后验概率(MAP)和最小二乘法
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和 ...
- 深度学习中交叉熵和KL散度和最大似然估计之间的关系
机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论 ...
- 最大似然估计(MLE)和最大后验概率(MAP)
最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知 ...
随机推荐
- VK Cup 2016 - Qualification Round 1 (Russian-Speaking Only, for VK Cup teams) B. Chat Order 水题
B. Chat Order 题目连接: http://www.codeforces.com/contest/637/problem/B Description Polycarp is a big lo ...
- Matlab 矩阵【Mark】
一.矩阵的表示在MATLAB中创建矩阵有以下规则: a.矩阵元素必须在”[ ]”内: b.矩阵的同行元素之间用空格(或”,”)隔开: c.矩阵的行与行之间用”;”(或回车符)隔开: d.矩阵的元素可以 ...
- Java--tomcat线程池(分析)
以apache-tomcat-7.0.57 为例子 tomcat的默认配置如下: <Connector connectionTimeout="/> 默认的线程池为: maxThr ...
- FLV视频在IIS6.0下不能播放 处理的方法
FLV视频在IIS6.0下不能播放 Flash视频由于其较高的压缩率和优越的下载速度,前景普遍看好,同时也为Flash课件增色不少.然而,在FLV视频播放中,却有两个头痛的问题 一.FLV视频在 ...
- 【docker】docker network常用命令参数
1.帮助命令 docker network --help 2.查看docker默认三种网络 docker network ls 3.创建自定义网络,如果不指定,默认创建类型为bridge类型 dock ...
- 使用wget提示无法建立SSL连接
wget 下载URL 提示无法建立SSL连接 解决方法: 原命令上加上" --no-check-certificate" 这是因为wget在使用HTTPS协议时,默认会去验证网站的 ...
- iOS 改动toolbar里面文字的字体和大小
使用NSDictionaty来设置文本的属性: NSDictionary * attributes = @{NSFontAttributeName: [UIFont fontWithName:@&qu ...
- 对于矩阵的理解-- by 孟岩老师
“如果不熟悉线性代数的概念,要去学习自然科学,现在看来就和文盲差不多.” --瑞典数学家Lars Garding名著<Encounter with Mathematics>. 1. 矩阵的 ...
- leetCode(28):Contains Duplicate II
Given an array of integers and an integer k, find out whether there there are two distinct indices i ...
- 数学图形(1.40)T_parameter
不记得在哪搞了个数学公式生成的图形. vertices = t = to (*PI) r = 2.0 x = r*(*cos(t) - cos(*t)) y = r*(*sin(t) - sin(*t ...