[LOJ6145][2017 山东三轮集训 Day7]Easy
description
一棵树,每次给出\(l,r,x\),求从点\(x\)出发到达\([l,r]\)中任意一点的最短距离。
sol
动态点分治。
建出点分树后,在每个节点上用以点编号为下标的线段树维护出子树中所有点到他的距离。
对于一组询问只要暴跳父亲然后查询就可以了。
一般而言写动态点分治的时候要维护两个东西,一个是当前节点子树的信息,另一个是当前子树给上一级重心(也就是点分树上的父亲的所有贡献)方便在计算时减去。但是在这里,因为题目中要求的是\(min\),而重复计算不会影响结果的正确性(因为距离只可能算大不可能算小),所以只维护一棵线段树就行了。
时间复杂度\(O(n\log^2n)\),注意空间复杂度也是\(O(n\log^2n)\)。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 2e5+5;
int n,q,to[N],nxt[N],ww[N],head[N],cnt,dfn[N],tim,dep[N],st[20][N],lg[N];
int sz[N],w[N],sum,root,vis[N],fa[N],rt[N],tot;
struct seg{int ls,rs,mn;}t[N*150];
void link(int u,int v,int w){
to[++cnt]=v;nxt[cnt]=head[u];ww[cnt]=w;head[u]=cnt;
}
void dfs(int u,int f){
st[0][dfn[u]=++tim]=dep[u];
for (int e=head[u];e;e=nxt[e])
if (to[e]!=f){
dep[to[e]]=dep[u]+ww[e];dfs(to[e],u);
st[0][++tim]=dep[u];
}
}
int dis(int u,int v){
int res=dep[u]+dep[v];u=dfn[u],v=dfn[v];
if (u>v) swap(u,v);int k=lg[v-u+1];
res-=min(st[k][u],st[k][v-(1<<k)+1])<<1;
return res;
}
void getroot(int u,int f){
sz[u]=1;w[u]=0;
for (int e=head[u];e;e=nxt[e])
if (to[e]!=f&&!vis[to[e]]){
getroot(to[e],u);
sz[u]+=sz[to[e]];
w[u]=max(w[u],sz[to[e]]);
}
w[u]=max(w[u],sum-sz[u]);
if (w[u]<w[root]) root=u;
}
void solve(int u,int f){
fa[u]=f;vis[u]=1;
for (int e=head[u];e;e=nxt[e])
if (!vis[to[e]]){
sum=sz[to[e]];root=0;
getroot(to[e],0);solve(root,u);
}
}
void modify(int &x,int l,int r,int p,int v){
if (!x) x=++tot,t[x].mn=1e9;t[x].mn=min(t[x].mn,v);
if (l==r) return;int mid=l+r>>1;
if (p<=mid) modify(t[x].ls,l,mid,p,v);
else modify(t[x].rs,mid+1,r,p,v);
}
int query(int x,int l,int r,int ql,int qr){
if (!x) return (int)1e9;
if (l>=ql&&r<=qr) return t[x].mn;
int mid=l+r>>1;
if (qr<=mid) return query(t[x].ls,l,mid,ql,qr);
if (ql>mid) return query(t[x].rs,mid+1,r,ql,qr);
return min(query(t[x].ls,l,mid,ql,qr),query(t[x].rs,mid+1,r,ql,qr));
}
int main(){
n=gi();
for (int i=1;i<n;++i){
int u=gi(),v=gi(),w=gi();
link(u,v,w);link(v,u,w);
}
dfs(1,0);
for (int i=2;i<=tim;++i) lg[i]=lg[i>>1]+1;
for (int j=1;j<=lg[tim];++j)
for (int i=1;i+(1<<j)-1<=tim;++i)
st[j][i]=min(st[j-1][i],st[j-1][i+(1<<j-1)]);
w[0]=sum=n;getroot(1,0);solve(root,0);
for (int i=1;i<=n;++i)
for (int u=i;u;u=fa[u])
modify(rt[u],1,n,i,dis(u,i));
q=gi();while (q--){
int l=gi(),r=gi(),u=gi(),x=u,ans=1e9;
while (x) ans=min(ans,query(rt[x],1,n,l,r)+dis(x,u)),x=fa[x];
printf("%d\n",ans);
}
return 0;
}
[LOJ6145][2017 山东三轮集训 Day7]Easy的更多相关文章
- 「2017 山东三轮集训 Day7 解题报告
「2017 山东三轮集训 Day7」Easy 练习一下动态点分 每个点开一个线段树维护子树到它的距离 然后随便查询一下就可以了 注意线段树开大点... Code: #include <cstdi ...
- 【loj6145】「2017 山东三轮集训 Day7」Easy 动态点分治+线段树
题目描述 给你一棵 $n$ 个点的树,边有边权.$m$ 次询问,每次给出 $l$ .$r$ .$x$ ,求 $\text{Min}_{i=l}^r\text{dis}(i,x)$ . $n,m\le ...
- 「2017 山东三轮集训 Day7」Easy
一棵带边权的树,多次询问 $x$ 到编号为 $[l,r]$ 的点最短距离是多少 $n \leq 100000$ sol: 动态点分治,每层重心维护到所有点的距离 查询的时候在管辖这个点的 log 层线 ...
- #6145. 「2017 山东三轮集训 Day7」Easy 动态点分治
\(\color{#0066ff}{题目描述}\) JOHNKRAM 最近在参加 C_SUNSHINE 举办的聚会. C 国一共有 n 座城市,这些城市由 n−1 条无向道路连接.任意两座城市之间有且 ...
- LOJ #6145. 「2017 山东三轮集训 Day7」Easy 点分树+线段树
这个就比较简单了~ Code: #include <cstdio> #include <algorithm> #define N 100004 #define inf 1000 ...
- 「2017 山东三轮集训 Day1」Flair
模拟赛的题 好神仙啊 题面在这里 之前的Solution很蠢 现在已经update.... 题意 有$ n$个商品价格均为$ 1$,您有$ m$种面值的货币,面值为$ C_1..C_m$ 每种物品你有 ...
- 【loj6142】「2017 山东三轮集训 Day6」A 结论题+Lucas定理
题解: 当奇数 发现答案就是C(n,1)^2+C(n,3)^2+...C(n,n)^2 倒序相加,发现就是C(2n,n) 所以答案就是C(2n,n)/2 当偶数 好像并不会证 打表出来可以得到 2.当 ...
- loj #6138. 「2017 山东三轮集训 Day4」Right
题目: 题解: 暴力一波 \(SG\) 函数可以发现这么一个规律: \(p\) 为奇数的时候 : \(SG(n) = n \% 2\) \(p\) 为偶数的时候 : \(SG(n) = n \% (p ...
- loj #6136. 「2017 山东三轮集训 Day4」Left
题目: 题解: 我们可以发现所有的交换器都是一个位置连接着下一层左侧的排序网络,另一个位置连着另一侧的排序网络. 而下一层是由两个更低阶的排序网络构成的. 两个网络互不干扰.所以我们可以通过第一行和最 ...
随机推荐
- Error:Cannot access first() element from an empty List
解决方案: bintray版本问题,修改为: classpath 'com.novoda:bintray-release:0.3.4' 如下: buildscript { repositories { ...
- 服务器22端口连接超时 ssh: connect to host *** port 22: Operation timed out
最近酸酸乳出问题,连接v社服务器发现碰到 ssh: connect to host master port 22: Connection timed out 的问题.现在对该问题做一下可能出现的问题 ...
- 搞懂分布式技术4:ZAB协议概述与选主流程详解
搞懂分布式技术4:ZAB协议概述与选主流程详解 ZAB协议 ZAB(Zookeeper Atomic Broadcast)协议是专门为zookeeper实现分布式协调功能而设计.zookeeper主要 ...
- 原生javascript-日期年,月,日联动选择
在线例子:http://lgy.1zwq.com/dateSwitch/ 月份的判定,由于涉及到过多了判定条件,如果用if else会大大降低性能,建议用switch 语法 getDays:funct ...
- HQL查询中取个别几个字段
数据表:
- Nim游戏与SG函数 ——博弈论小结
写这篇博客之前,花了许久时间来搞这个SG函数,倒是各路大神的论文看的多,却到底没几个看懂的.还好网上一些大牛博客还是性价比相当高的,多少理解了些,也自己通过做一些题加深了下了解. 既然是博弈,经典的N ...
- centos7 配置 NFS mount挂载服务器
1. NFS服务端 安装NFS服务 yum install nfs_utils yum install rpcbind (系统默认已经有了,可查看下) 配置共享文件夹 1. 创建文件夹: mkd ...
- python 重新修炼之路
第一篇 基础篇 1.1 打造万能的开发环境-conda 1.2 python的代码规范与vscode配置 1.3 变量 与 关键字 1.4 数据类型 1.4.1 数字 ...
- C++:tinyxml的使用
1. 简介 TinyXML2(最新版本)是一个开源的功能齐全的XML解析库 For C++,源码见:github. 2. 开始使用 首先从Github上获得源码,是一个完整的演示工程,我们只需要其中的 ...
- poj1698
题解: 网络流 然后似乎反着做块? 代码: #include<cstdio> #include<cstring> #include<algorithm> #incl ...