一、为什么需要数据归一化

  不同数据之间因为单位不同,导致数值差距十分大,容易导致预测结果被某项数据主导,所以需要进行数据的归一化。

  解决方案:将所有数据映射到同一尺度

二、最值归一化 normalization

  最值归一化:把所有数据映射到0-1之间

  

  适用于分布有明显边界的情况;受outlier影响较大

import numpy as np
import matplotlib.pyplot as plt
x = np.random.randint(0,100,100)
# 一维矩阵的最值归一化
print((x - np.min(x)) / (np.max(x) - np.min(x))) #最值归一化
# 二维矩阵中分别对每列进行最值归一化
x = np.random.randint(0,100,(50,2))
x = np.array(x,dtype=float)
x[:,0] = (x[:,0] - np.min(x[:,0])) / (np.max(x[:,0]) - np.min(x[:,0]))
x[:,1] = (x[:,1] - np.min(x[:,1])) / (np.max(x[:,1]) - np.min(x[:,1]))
# 绘制散点图
plt.scatter(x[:,0],x[:,1])
plt.show()
# 第0列的均值和方差
print(np.mean(x[:,0]))
print(np.std(x[:,0]))
# 第1列的均值和方差
print(np.mean(x[:,1]))
print(np.std(x[:,1]))

输出结果:

[0.37373737 0.77777778 0.47474747 0.17171717 0.82828283 0.13131313
0.66666667 1. 0.73737374 0.26262626 0.3030303 0.88888889
0.85858586 0.80808081 0.92929293 0.64646465 0.97979798 0.16161616
0.7979798 0.64646465 0.95959596 0.29292929 0.90909091 0.8989899
0.29292929 0.62626263 0.65656566 0.35353535 0.85858586 0.8989899
0.03030303 0.76767677 0.75757576 0.8989899 0.26262626 0.82828283
0.72727273 0.77777778 0.16161616 0.18181818 0.81818182 0.19191919
0.11111111 0.90909091 0.17171717 0.04040404 0.52525253 0.
0.34343434 0.88888889 0.07070707 0.82828283 0.01010101 0.63636364
0.56565657 0.1010101 0.05050505 0.15151515 0.91919192 0.03030303
0.96969697 0.26262626 0.06060606 0.06060606 0.66666667 0.74747475
0.14141414 0.64646465 0.77777778 0.90909091 0.47474747 0.72727273
0.96969697 0.76767677 0.23232323 0.26262626 0.54545455 0.41414141
0.11111111 0.38383838 0.66666667 0.12121212 0.64646465 0.27272727
0.21212121 0.21212121 0.84848485 0.71717172 0.5959596 0.56565657
0.07070707 0.77777778 0.95959596 0.90909091 0.42424242 0.
0.94949495 0.95959596 0.41414141 0.68686869]

0.4574736842105262
0.29314011096016795
0.5129896907216495
0.3081736973516696

三、均值方差归一化 standardization

  均值方差归一化:把所有数据归一到均值为0方差为1的分布中

  

  适用于数据分布没有明显的边界,有可能存在极端数据值

import numpy as np
import matplotlib.pyplot as plt
# 二维矩阵中分别对每列进行均值方差归一化
x2 = np.random.randint(0,100,(50,2))
x2 = np.array(x2,dtype=float)
x2[:,0] = (x2[:,0] - np.mean(x2[:,0])) / np.std(x2[:,0])
x2[:,1] = (x2[:,1] - np.mean(x2[:,1])) / np.std(x2[:,1])
plt.scatter(x2[:,0],x2[:,1])
plt.show()
#打印对应列的均值和方差
print(np.mean(x2[:,0]))
print(np.std(x2[:,0]))
print(np.mean(x2[:,1]))
print(np.std(x2[:,1]))

运行结果:

7.348288644237755e-17
1.0
8.104628079763643e-17
0.9999999999999999

四、对测试数据进行归一化

  利用scikit-learn中的StandardScaler对数据进行均值方差归一化演示:

import numpy as np
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data
y = iris.target
from sklearn.model_selection import train_test_split
#创建训练数据集和测试数据集
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state = 666)
from sklearn.preprocessing import StandardScaler
# 构造均值方差归一化对象
standardScaler = StandardScaler()
# 把自身返回回来,现在standardScaler中存放了计算均值方差归一化的关键信息
standardScaler.fit(x_train)
# 均值
print('训练数据均值:',standardScaler.mean_ )
# 描述数据分布范围 包括:方差 标准差等
print('训练数据方差:',standardScaler.scale_)
# 对训练数据进行归一化处理
x_train = standardScaler.transform(x_train)
# 对测试数据进行归一化处理,并赋值给 x_test_standard
x_test_standard = standardScaler.transform(x_test)
from sklearn.neighbors import KNeighborsClassifier
# 创建一个kNN分类器
knn_clf = KNeighborsClassifier(n_neighbors=3)
# 将均值方差归一化后的数据进行写入
knn_clf.fit(x_train,y_train)
# 计算分类器准确度
print("测试数据经过均值方差归一化后 准确度:",knn_clf.score(x_test_standard,y_test))
# 测试数据集没有进行归一化处理
print("测试数据未经过均值方差归一化后 准确度:",knn_clf.score(x_test,y_test))

运行结果:

训练数据均值: [5.83416667 3.0825     3.70916667 1.16916667]
训练数据方差: [0.81019502 0.44076874 1.76295187 0.75429833]
测试数据经过均值方差归一化后 准确度: 1.0
测试数据未经过均值方差归一化后 准确度: 0.3333333333333333

机器学习-kNN-数据归一化的更多相关文章

  1. 机器学习:数据归一化(Scaler)

    数据归一化(Feature Scaling) 一.为什么要进行数据归一化 原则:样本的所有特征,在特征空间中,对样本的距离产生的影响是同级的: 问题:特征数字化后,由于取值大小不同,造成特征空间中样本 ...

  2. 第四十九篇 入门机器学习——数据归一化(Feature Scaling)

    No.1. 数据归一化的目的 数据归一化的目的,就是将数据的所有特征都映射到同一尺度上,这样可以避免由于量纲的不同使数据的某些特征形成主导作用.   No.2. 数据归一化的方法 数据归一化的方法主要 ...

  3. 数据归一化Scaler-机器学习算法

    //2019.08.03下午#机器学习算法的数据归一化(feature scaling)1.数据归一化的必要性:对于机器学习算法的基础训练数据,由于数据类型的不同,其单位及其量纲也是不一样的,而也正是 ...

  4. 机器学习PAL数据预处理

    机器学习PAL数据预处理 本文介绍如何对原始数据进行数据预处理,得到模型训练集和模型预测集. 前提条件 完成数据准备,详情请参见准备数据. 操作步骤 登录PAI控制台. 在左侧导航栏,选择模型开发和训 ...

  5. 数据处理:2.异常值处理 & 数据归一化 & 数据连续属性离散化

    1.异常值分析 异常值是指样本中的个别值,其数值明显偏离其余的观测值.异常值也称离群点,异常值的分析也称为离群点的分析. 异常值分析 → 3σ原则 / 箱型图分析异常值处理方法 → 删除 / 修正填补 ...

  6. matlab将矩阵数据归一化到[0,255]

    matlab将矩阵数据归一化到[0,255]     function OutImg = Normalize(InImg) ymax=255;ymin=0; xmax = max(max(InImg) ...

  7. 数据归一化Feature Scaling

    数据归一化Feature Scaling 当我们有如上样本时,若采用常规算欧拉距离的方法sqrt((5-1)2+(200-100)2), 样本间的距离被‘发现时间’所主导.尽管5是1的5倍,200只是 ...

  8. R学习:《机器学习与数据科学基于R的统计学习方法》中文PDF+代码

    当前,机器学习和数据科学都是很重要和热门的相关学科,需要深入地研究学习才能精通. <机器学习与数据科学基于R的统计学习方法>试图指导读者掌握如何完成涉及机器学习的数据科学项目.为数据科学家 ...

  9. MATLAB实例:聚类初始化方法与数据归一化方法

    MATLAB实例:聚类初始化方法与数据归一化方法 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 聚类初始化方法:init_methods.m f ...

随机推荐

  1. paoding rose controller包及文件名命名规则

    1.包命名规则:xxx.xxx.controllers(否则扫描不到)

  2. 【Nginx】优化配置

    nginx优化 突破十万并发 一.一般来说nginx 配置文件中对优化比较有作用的为以下几项: 1.  worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它 ...

  3. saltstack基础篇

    使用saltstack的前提是PPT      服务.流程.工具和技术 安装 rpm -Uvh http://mirrors.yun-idc.com/epel/6Server/x86_64/epel- ...

  4. webpack打包css样式出错

    有两个组件home和search 两个组件中都有class为footer的元素 但是search的footer比home的多一条background的样式 本地开发的时候没问题,但是打包之后,home ...

  5. 【刷题】洛谷 P3796 【模板】AC自动机(加强版)

    题目描述 有 \(N\) 个由小写字母组成的模式串以及一个文本串 \(T\) .每个模式串可能会在文本串中出现多次.你需要找出哪些模式串在文本串 \(T\) 中出现的次数最多. 输入输出格式 输入格式 ...

  6. Quartz-作业调度框架

    简介 Quartz 是个开源的作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制.Quartz 允许开发人员根据时间间隔(或天)来调度作业.它实现了作业和触发器的多对多关系,还 ...

  7. 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告

    P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...

  8. AtCoder Regular Contest 088 E - Papple Sort(树状数组+结论)

    结论:每次把字符丢到最外面最优,用树状数组统计答案,把字符放到最外边后可以当成消失了,直接在树状数组上删掉就好. 感性理解是把字符丢到中间会增加其他字符的移动次数,但是丢到外面不会,所以是正确的. # ...

  9. 洛谷 P1486 BZOJ 1503 NOI 2004 郁闷的出纳员 fhq treap

    思路: 1. 此处的fhq treap的分裂是按照权值分裂然后插入的.将小于k的分为一棵子树,大于等于k的分为另一棵子树. 2. 删除的时候只要将大于等于min的分裂到以root为根的树中,另一部分不 ...

  10. 洛谷P3048 [USACO12FEB]牛的IDCow IDs

    P3048 [USACO12FEB]牛的IDCow IDs 12通过 67提交 题目提供者lin_toto 标签USACO2012 难度普及/提高- 时空限制1s / 128MB 提交  讨论  题解 ...